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Cette synthése introduit le manuscrit rédigé en anglais qui s’intitule “Se-
mantic similarities at the core of generic indexing and clustering approaches”. Elle en re-
prend les idées principales en détaillant tout d’abord les travaux existants
et le positionnement de la these par rapport a ceux-ci, fixe nos objectifs de
recherche, puis présente nos contributions en indexation et catégorisation.
Enfin, cetavant-propos s’acheve sur les conclusions et enseignements tirés

de ces recherches, ainsi que nos perspectives de travaux futurs.

I. Contexte et positionnement

L'Intelligence Artificielle (IA) se divise selon Russell and Norvig (1995) en
quatre catégories : penser humainement, agir humainement, penser ra-
tionnellement et agir rationnellement. Cette définition ouvre un large ch-
amp de recherche qui englobe de nombreuses disciplines. Prenons pour
exemple un systéme de recommandation tel que celui d’Amazon proposant
des produits pouvant intéresser un internaute, et un programme de jeu
d’échecs. Clairement, ces deux applications semblent avoir des fonction-
nements sans lien commun et pourtant, ils reposent tous deux sur de l’ap-
prentissage automatique. Ce paradigme, grandement exploité enIA, consiste
a créer des modeles sur la base de diverses sources afin de faire des pré-
dictions ou de prendre des décisions. Il differe notamment des autres ap-
proches par le fait qu’il requiert de définir non pas un modele a suivre,
mais un ensemble de criteres que le systéeme optimise grace a un ensemble
d’exemples (jeu d’entrainement) pour créer un modele optimisé sur les don-

nées.

L'apprentissage automatique est notamment utilisé de facon intensive dans
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le cadre de la Recherche d’Information (RI). Celle-ci est au cceur de bien
des systemes logiciels impliquant des techniques appartenant a I'IA : re-
commandation, aide a la décision, veille technologique, etc. Ce domaine
consiste a étudier les moyens de représenter, stocker, organiser et accéder
a des éléments d’information (Baeza-Yates and Ribeiro-Neto, 1999), que
nous nommons documents dans ce manuscrit. Le processus de RI est gé-
néralement familier, du moins du c6té utilisateur, du fait de notre utilisa-
tion intensive des moteurs de recherche. La Figure i propose une représen-
tation d'un tel processus. Tout d’abord, un utilisateur exprime un besoin
en information sous la forme d’une requéte. Le SRI (Systéme de Recherche
d’Information) a en charge de trouver dans un corpus préalablement in-
dexé (nous y reviendrons dans la section suivante), les documents qui font
sens au regard de la requéte (étape 1). Un score de pertinence est affecté a
chaque résultat (étape 2), puis les résultats sont ordonnés en fonction de
ce score et retournés a l'utilisateur. Il en découle que 'étape critique est
’association d’un score de pertinence a chaque document, qui repose prin-
cipalement sur'indexation des documents dans le corpus. Ces deux étapes

sont détaillées dans la section suivante.

I.1. L’INDEXATION, UN PROCESSUS CLE DE LA RECHERCHE D’ INFORMATION

Le processus d’indexation d'un corpus de documents consiste a construire
une représentation du contenu de chaque document la plus fidéle possible,
mais favorisant une exploitation logicielle des plusrapidesetefficaces. L'in-
dex est donc construit de facon a ce que la recherche d’information (étape
1) soit rapide. Avant le calcul de pertinence, il est important d’identifier
les documents candidats au regard d'une requéte (premier filtrage gros-

sier). Puisque parcourir I’ensemble des documents serait bien trop cotiteux,
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FIGURE A. : Processus classique de RI.

une solution consiste a construire un fichier inverse. L'idée est de stocker
pour chaque élément de l'indexation (terme, concept,...), laliste des docu-
ments qui le contiennent dans leur indexation. De cette facon, pour une
requéte contenant un terme, le SRI peut instantanément retourner l'en-

semble des documents potentiellement intéressants car contenant ce terme.

Etudions désormais I’étape suivante évoquée ci-dessus : le calcul de la per-
tinence. Dans la littérature, de nombreux modéles de pertinence ont été
proposés. Les plus basiques sont les modeles booléens, qui demandent d’ex-
primer la requéte sous une forme logique (Lancaster and Gallup, 1973). Le
principal probléme de cette approche est qu'une fois que les documents po-
tentiels ont été identifiés, leur score de pertinence est binaire : 1 si le do-
cument satisfait la représentation logique de la requéte, zéro sinon. Les
modeles vectoriels (Salton et al ], 1975) s’appuient quant a eux sur ’algébre.
Ils proposent de représenter la requéte et les documents sous la forme de

vecteurs de poids associés aux termes qu’ils contiennent. Ensuite, la si-



milarité entre deux vecteurs peut étre estimée grace aux propriétés algé-
briques, par exemple via une mesure de cosinus. Le dernier paradigme ex-
ploité est probabiliste (Maron and Kuhns, 1969 ; Robertson et al, 1995) et
modélise la probabilité d’'un document d’étre pertinent pour une requéte.
Les probabilités élémentaires sont apprises a partir d’'un ensemble d’ex-
emples. Tous ces modéles sont malgré tout extrémement dépendants de la
qualité de 'indexation (ou annotation) des documents, qui reste au coeur
de la recherche d’information. C’est pourquoi elle fait ’objet principal de
cette thése avec deux questions en filigrane : est-ce que I'utilisation d’onto-
logies de domaine et de mesures sémantiques conduisent a de meilleures
prédictions/décisions ? Et ces approches permettent-elle le développement

de solutions génériques?

[.II. DE L’UTILITE DES DONNEES CATEGORISEES

La RI exploite également d’autres processus de I'IA, comme par exemple
la catégorisation ou classification. Catégoriser est une tache que 'Homme
s’attache a faire depuis bien longtemps, et ce de facon tres fréquente a
des fins diverses d’apprentissage ou de transmission de connaissance, par
exemple. La catégorisation consiste a rassembler des objets similaires et a les
éloigner de groupes d’objets différents, ce qui nécessite dans un cadre infor-
matique de classification automatique la définition d’une distance qui per-
mettra de faire ces rassemblements ou séparations (Manning et al, 2008).
Deux grandes classes d’approches coexistent : la catégorisation hiérarchique
et le partitionnement. La premiere consiste a identifier la structure inhé-
rente aux documents catégorisés sous la forme d'un arbre (par exemple, la
phylogénie des espéces en bioinformatique) alors que le partitionnement

se focalise sur la délimitation de groupes. Le choix de I'une ou de 'autre
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dépendra des données d’entrée et du résultat souhaité.

En RI, la classification est utilisée notamment pour la diversification des
résultats. Comme [Clarke et al] (2011) 'expliquent, les résultats d’une re-
cherche, de par leur “proximité” a une requéte, ont de bonnes chances
d’étre similaires entre eux, et cette redondance peut ne pas satisfaire l'utili-
sateur. La classification permet de pallier ce probleme comme c’est notam-
ment explicité dans Collapudi and Sharma (2009), ou 1'idée est de propo-
ser des groupes de résultats concernant les diftérents aspects de la requéte.
Agrawal et al] (2009) ; Skoutas et al] (2010) suggérent que cette approche
peut méme contrer une éventuelle ambiguité de la requéte en proposant

des résultats correspondant aux différents sens qu’elle peut avoir.

La catégorisation est souvent suivie d’'une étape d’étiquetage qui permet
de comprendre les groupes qui ont été réalisés (Role and Nadif], po14)). Cette
tache est elle aussi parfois automatisée, comme dans les travaux de Ber-
nardini et al. (2009) : leur application propose, suite a une recherche d’in-
formation, plusieurs groupes de résultats étiquetés que l'utilisateur peut

choisir pour spécifier sa requéte.

[.III. VERS DES APPROCHES BASEES SUR LA CONNAISSANCE D’UN DOMAINE

Afin de rendre un systeme intelligent, il semble intuitif de le pourvoir d'une
certaine connaissance d'un domaine. Pour ce faire, une solution est de re-
présenter la connaissance de fagon compréhensible pour l'outil informa-
tique (Russelland Norvig, 1995). Lontologie est certainement la représenta-
tion la plus connue, mais d’autres plus ou moins formelles ont été décrites
(Harispe etall, 2o15b ; Sy etall, 2o12). Par conséquent, des systemes faisant

usage de ces connaissances ont émergé, notamment dans les domaines ot
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un haut niveau d’expertise est requis comme dans le domaine biomédical
(Smith et all, 2007). Ces systemes ont été mis a I’épreuve et comparés aux
systémes plus classiques, par exemple ceux qui sont basés sur des termes et
utilisent des techniques de traitement de la langue naturelle (TALN). Une
nette amélioration a été constatée en RI (Haav and Lubi, 2oo1), principale-
ment parce que les approches classiques sont perturbées par la présence de
synonymie et 'ambiguité inhérente a la langue (Ciunchiglia et all, oog ;
Bhagdev etall, 2008 ; Stokoe etall, 2003). Le bénéfice de telles approches ne
réside pas uniquement en ’absence de synonymie (ainsi que de polysémie)
grace a |'utilisation de concepts—les unités de sens dans une représenta-
tion de connaissances—en place des termes. La structure proposée par la
représentation des connaissances permet par exemple de savoir que CHIEN
est un MAMMIFERE en considérant les relations entre les concepts, et en-

suite d’exploiter cette connaissance dans le processus.

Les mesures de similarité sémantique visent justement a exploiter ces dif-
férentes relations afin d’estimer la similarité de deux concepts. De nom-
breuses mesures existent et Harispe (2014) en propose une description éten-
due. Dans nos travaux, nous nous appuyons principalement sur des me-
sures de similarité sémantique exploitant la théorie de I'information et te-
nant compte des relations taxonomiques (lien de spécialisation is_a ou de
généralisation), comme dans l'exemple cité au-dessus. A la vue du gain
pour ce qui est de la qualité des systemes basés sur des représentations des
connaissances, il apparaitlogique que leur utilisation ait été étendue a I'in-

dexation et a la catégorisation.

[.III.1. Cannotation sémantique de documents

Une nette amélioration des résultats de la RI ayant été constatée lors de
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'utilisation de systémes basés sur la représentation de connaissance, I'in-
dexation sémantique s’est rapidement imposée. Elle a été notamment ap-
pliquée aux articles scientifiques, dans le domaine biomédical (PubMed,
du NCBI, propose des articles annotés par le MeSH par exemple). L'indexa-
tion sémantique consiste a indexer les documents d'un corpus avec des
concepts d'une ontologie de domaine plutét qu’avec des termes. Pour auto-
matiser ce processus, plusieurs stratégies ont été envisagées. La premiere
découle directement des approches textuelles et consiste a extraire les con-
ceptsdu texte. Ensusd’identifier les termes du document qui prédominent,
le but estici de rechercher les concepts auxquels il font référence. C’est pré-
cisément l'idée derriere MetaMap (Aronson, 2oo1). La principale difficulté
de ces approches reste de lever toute 'ambiguité lors du passage du terme
au concept, probleme pour lequel MaxMatcher (Zhou etall, 2006a)) apporte
des éléments de réponse. Pour avoir une vision plus large de ces approches,
il est possible de se reférer a Neves and Leser (2014) qui proposent une étude

rassemblant de nombreux outils.

L'alternative al’extraction des concepts consiste a reposer sur des approches
d’apprentissage automatique. Ces méthodes requierent 'identification de
critéres qui, optimisés sur un jeu d’apprentissage, permettront de prédire
les annotations du document. Plusieurs pistes sont suivies, comme 1'uti-
lisation des précédents articles des auteurs ou les articles cités (Delbecque
and Zweigenbaum, 2010) ; le score associé a chaque concept retourné par
une méthode d’extraction de concepts (Cay et al., 2007); ou la fréquence
d’apparition du concept dans des documents du corpus proches du docu-
ment a annoter (ITieschnigg et all, 200g). Le fait de s’appuyer sur des do-
cuments déja annotés est une méthode tres utilisée, appelée méthode des

k plus proches voisins (Huang et alJ, po11; Mao and Lu|, po13; Mao et alJ,
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2014). Elle consiste a identifier le voisinage d'un document grace a un sys-
teme similaire a la RI. Par exemple, en soumettant le titre du document
cible en requéte, on obtient une liste de documents proches. Ces documents
étant déja annotés, leurs concepts sont ensuite filtrés ou ordonnés par de
nombreuses approches d’apprentissage automatique (Huang et all, 2o11;

Delbecque and Zweigenbaum), 2019 ; Liu et al, 2o14).

[.III.2. La catégorisation sémantique

L'intégration de bases de connaissances a également été expérimentée pour
plusieurs approches de classification automatique comme le notent Bhara
thi and Venkatesan (2012). Les premiers a développer 1'idée et proposer de
classifier des documents textuels sur la base des concepts extraits de leur
contenu sont Hotho et al| (2001, 2002, 2003). Ces derniers émettent 1’hy-
pothése que comparer les documents sur la base de leurs annotations tex-
tuelles n’est pas suffisant et proposent de les comparer selon les concepts
qui en sont extraits. Afin de tirer parti de la structure de connaissance asso-
ciée, ilsintegrent dans le calcul les hypernymes directs des concepts. Ainsi,
deux documents annotés par les termes “chien” et “chat” seront considérés
comme proches puisqu’ils seront respectivement annotés par les concepts
{CHIEN, CARNIVORE, MAMMIFERE} et {CHAT, CARNIVORE, MAMMIFERE}. Glo-
balement, cette facon de procéder est au coeur des approches de catégorisa-
tion sémantique (Spanakis etall, o1l ; Yoo and Hu, 200G). Certains travaux
vont plus loin pour exploiter la représentation de connaissances en utili-
sant des mesures de similarité sémantique entre les concepts annotant les

documents (eux aussi extraits du contenu).

A la suite de regroupements faisant intervenir diverses méthodes de cal-

cul de similarité, il est nécessaire de les étiqueter pour rendre explicites les



raisons de ce regroupement. Les approches existantes sont principalement
dédiéesal’étiquetage de groupes de genes. Cela s’explique par le fait que les
biologistes ont spécifiquement besoin de ces outils pour analyser les résul-
tats d’une puce a ADN, par exemple. En effet, ce processus fournit de nom-
breuses valeurs d’expression pour un grand nombre de génes testés dans
différentes conditions. Ceux exprimés de facon similaire et dans des condi-
tions similaires ont de grandes chances d’intervenir dans le méme proces-
sus métabolique qu’il convient d’identifier. Cette identification passe par
un étiquetage du groupe de genes concernés sur la base des annotations sé-
mantiques qui leur sont associées!. La principale limite de cette approche
est qu’elle est souvent basée sur une étude statistique qui cherche a identi-
fierles concepts surreprésentés dans le groupe (Beissbarth and Speed, 2004 ;
Lee etall, poos ; Bauer et all, 2008), or cette stratégie est souvent appliquée
a des partitions de génes et non a des structures hiérarchiques. Dans cette
thése, nous nous confrontons au probléme de donner une sémantique a
une hiérarchie de catégories, ou les plus abstraites devraient étre annotées
par des concepts généraux alors que les plus fines devraient I'étre par des

concepts plus spécifiques.

II. Contributions de la thése

II.I. UNE APPROCHE GENERIQUE D’INDEXATION SEMANTIQUE

L'état de ’art fait état de nombreuses approches pour annoter sémantique-
ment des documents textuels, particulierement des articles du domaine
biomédical ; or, d’autres types de documents sont souvent annotés par des

concepts issus d’ontologies, notamment des séquences génétiques ou des

"Il est pratique courante d’annoter les genes avec des concepts de la Gene Ontology.
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images. Ainsi, nous nous somme concentrés sur la réalisation d’'une ap-

proche rapide et générique d’indexation sémantique de documents.

I1.I.1. Détail de la méthode

L'idée d’une telle approche est de ne pas dépendre exclusivement du contenu
du document pour 'annoter, mais de s’appuyer sur les annotations des do-
cuments qui lui sont proches. Nous avons repris une technique récurrente
dansla litérature, celle basée sur les k plus proches voisins. Celle-ci permet
de disposer d’'un ensemble de concepts potentiellement pertinents pour an-
noter un document donné. L'innovation de notre approche réside essen-
tiellement dans la maniere d’identifier les concepts pertinents au sein de
cet ensemble. Nous partons du principe que des documents proches au re-
gard d’un systeme de recherche d’information (et donc proches en matiere
de contenu) doivent aussi étre proches en matiére d’annotations. Ainsi,
la qualité d’annotation du document est calculée selon sa similarité avec
les documents voisins. Le calcul de similarité est rendu possible par I'uti-
lisation de mesures de similarités sémantiques, qui tiennent compte de
la structure de connaissance. De plus, il est possible de calculer la simila-
rité sémantique de deux groupes de concepts (donc de deux annotations)
avec une telle approche. De fait, on compare non plus la pertinence d'un
concept au regard du voisinage, mais une annotation complete. Ce type
d’approche permet de favoriser la synergie de 'annotation en empéchant des
redondances comme un concept parent et son fils dans 'annotation (par

exemple {CHIEN,CANIDE}).

Cependant, la simple similarité avec le voisinage ne suffit pas pour consti-
tuer une annotation valable. En effet, cette seule condition n’empécherait

pas d’annoter le document avec de nombreux concepts, or souvent, I'in-
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dexation d'un document se résume a une dixaine de concepts. Au mini-
mum, il faut étre capable d’adapter la taille de I’annotation selon la taille
usuellement choisie pour le corpus. Nous proposons une fonction objectif
rassemblant ces éléments (similarité sémantique, similarité avec le voisi-
nage et contrainte sur la taille de 'annotation) qui permet d’annoter un
document uniquement sur la base de son voisinage. La description de
la fonction objectif ainsi que d’un algorithme I'implémentant a fait 'objet

de la publication scientifique suivante :

Indexation conceptuelle par propagation. Application a un corpus d’ar-
ticles scientifiques liés au cancer.

Nicolas Fiorini, Sylvie Ranwez, Vincent Ranwez, et Jacky Montmain. Actes de CORIA

2014, COnférence en Recherche d’Information et Applications, Nancy, Fran-

ce, 19-21 mars 2014.

II.I.2. Optimisation algorithmique

La principale limite de I'utilisation des similarités sémantiques est la com-
plexité algorithmique qu’elles induisent. Par conséquent, nous nous som-
mes efforcés de créer une approche de complexité polynomiale raisonnable.
L'algorithme permettant d’indexer un document nommé USI (User-orient-
ed Semantic Indexer) est optimisé, ce qui nous permet de réduire significa-
tivement sa complexité. Afin de tester la pertinence de la complexité finale,
nous comparons notre approche aux approches de I’état de ’art pour ce qui
est du temps d’exécution. Les résultats de cette comparaison sont sans ap-
pel, puisqu’USI s’exécute 50 fois plus rapidement qu'une approche ba-
sée sur I'apprentissage automatique, déja rapide en soi. Cette optimisa-
tion ainsi que la comparaison des résultats d’USI avec I’existant sont propo-

sées dans la publication suivante :
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USI : a fast and accurate approach for conceptual document annota-
tion.
Nicolas Fiorini, Sylvie Ranwez, Jacky Montmain, Vincent Ranwez. BMC Bioinforma-

tics, Volume 16, Issue 83, 14 March 2015.

I1.1.3. Evaluation sur un challenge international

Afin de tester la qualité et la pertinence de notre approche, nous avons par-
ticipé a un challenge d’annotation d’articles biomédicaux a grande échelle,
BioASQ2015. Nous avons développé plusieurs variantes d’USI afin non seule-
ment de tester sa flexibilité, mais aussi de proposer un systéme optimisé
pour ce challenge. En effet, bien qu'USI soit générique, son but est aussi
d’étre facilement adaptable, c’est-a-dire facilement optimisable sur un en-

semble spécifique de documents.

Nous avons testé différentes tailles de voisinage, différentes mesures de
similarité sémantique, l'intégration de baselines®. Chaque jeu de test? de-
vait étre annoté en moins d'une journée et pouvait contenir jusqu’a plus de
21 ooo documents. Le meilleur résultat d’USI est obtenu pour le troisieme
jeu de test ou il se positionne second. Sur la totalité des jeux de test, il est
troisieme parmi une quinzaine de participants internationaux. Ce résul-
tat est extrémement encourageant, tenant compte du fait qu'USI est une
méthode générique en comparaison aux approches bien plus lourdes (com-
portant des phases d’apprentissage longues) et capturant les moindres spé-
cificités du contexte. Il valide par 1a méme l'utilisation de similarités

sémantiques et suggére l'utilisation d’'une approche générique cou-

?BioASQ fournit, pour chaque jeu de test, les résultats d’approches considérées comme
références.
3Au total, 15 jeux de tests ont été proposés.
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plée a des approches exploitant plus précisément les spécificités du
contexte applicatif. Les résultats a ce challenge, ainsi que la description
des différentes variantes d’USI soumises au challenge ont fait I'objet de la

publication suivante :

USI at BioASQ 2015 : a Semantic Similarity-Based Approach for Seman-
tic Indexing

Nicolas Fiorini, Sylvie Ranwez, Sebastien Harispe, Jacky Montmain and Vincent Ranwez.
In Working Notes for the Conference and Labs of the Evaluation Forum,

CLEF 2015, Toulouse, France, September 8-11 2015.

II.I.4. “U” pour User-oriented

Au-dela de’annotation entierement automatique de documents, nous avons
voulu étudier I'impact occasionné par I'intervention d'un expert. En effet,
notre objectif n’est en rien de remplacer l’expert, mais au contraire de lui
fournir un environnement qui ’assiste dans ses activités quotidiennes et
allége certaines phases du processus d’indexation, ceci en s’adaptant au
maximum a son contexte. Puisque la sélection du voisinage est une étape
critique pour USI, nous souhaitons permettre a l'utilisateur de participer a
sa sélection. Nous proposons de suivre 'intuition de Delbecque and Zwei
genbaum (2010) sur un corpus d’articles scientifiques. Pour un document
a annoter, nous recherchons les articles déja publiés des co-auteurs ainsi
que ceux cités en références. Comme chaque document est annoté séman-
tiquement, nous calculons la similarité sémantique de toutes les paires de
documents que nous projetons sur un espace a deux dimensions grace a la
technique MDS (Multi-Dimensional Scaling). Ensuite, nous demandons a
'utilisateur de pointer ’endroit o, selon lui, ce document devrait se situer

sur la carte sémantique. Un clic sur cette carte identifie implicitement un
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voisinage qui permet ensuite I’annotation du document.

Afin de comparer une telle approche a une autre entierement automatique,
nous simulons des clics experts aux endroits ou le document devrait étre
positionné. C’est-a-dire, lorsque nous calculons les similarités des paires
de documents, nous calculons aussi celles correspondant au document a
annoter, puisque nous disposons de son annotation dans le cadre de ’éva-
luation. La carte est ainsi créée et le document en question en est retiré,
puis un clic est simulé a ’endroit ou il était positionné. USI est lancé sur
la base du voisinage défini implicitement par le clic et une annotation est
générée. Les résultats montrent qu'une telle approche permet d’obtenir
de meilleures annotations grace a un voisinage mieux défini qu’avec
une approche totalement automatique. Deux démonstrateurs sont dispo-
nibles afin d’essayer le principe de la carte sémantique pour annoter un

document :

Démonstration sur des articles biomédicaux

http://bio.usi.nicolasfiorini.info

Démonstration sur des films

http://movies.usi.nicolasfiorini.info

II.I.5. Impact de I'imprécision

L'action de l'expert peut toutefois étre imprécise. Nous avons donc étudié
I'impact d’un écart du clic de la souris et la sensibilité d'une telle approche.

Nous avons ainsi amélioré I'outil visuel en ’agrémentant d’un indice de
sensibilité. Lorsque la carte est créée, elle est divisée en n sous-cartes (ou

tuiles). Un clic est simulé au centre de chacune d’entre-elles, leur donnant
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ainsi une annotation sémantique. Les similarités sémantiques de chaque
tuile avec les tuiles adjacentes sont calculées. Lorsque 'utilisateur survole
la carte avec sa souris, une zone est colorée sur la carte, correspondant aux
tuiles tres similaires a la tuile survolée. Par conséquent, sil'utilisateur sur-
vole une tuile dont la zone colorée est large, cela veut dire que I'imprécision
importe peu puisque 'annotation en résultant sera a peu pres similaire.
Par contre, si cette zone est petite, alors l'utilisateur devra préter plus d’at-
tention a I’endroit du clic. Cette étude de I'impact de I'imprécision lors de

I'interaction avec |'utilisateur a fait I'objet de la publication suivante :

Coping with imprecision during a semi-automatic conceptual indexing
process.

Nicolas Fiorini, Sylvie Ranwez, Jacky Montmain, and Vincent Ranwez. In Information
Processing and Management of Uncertainty (part III), proceedings of IPMU
2014, 15th International Conference on Information Processing and Mana-
gement of Uncertainty in Knowledge-Based Systems, Series : Communi-
cations in Computer and Information Science, Vol. 444, Springer, Laurent,
A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (Eds.), ISBN : 978-3-319-
08851-8, pp. 11-20, Montpellier, France, July 15-19 2014.

II.II. CATEGORISATION ET ETIQUETAGE SEMANTIQUE

Notre approche générique de I'indexation sémantique a été étendue pour
répondre au besoin de catégorisation et d’étiquetage de catégories. Plus par-
ticulierement, nous y explorons I'impact de 'utilisation de similarités sé-
mantiques dans le cadre de la catégorisation de documents annotés séman-

tiquement. La encore, I'idée est de réaliser une approche de classifica-
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tion et de labellisation indépendante du type de documents.

II.II.1. Détails de 'approche

La catégorisation hiérarchique proposant une structure de catégories et non
une simple partition, nous nous sommes concentrés sur cette technique
plus informative. L'algorithme classique pour une telle approche est ité-
ratif. Dans un premier temps, chaque document est placé seul dans une
catégorie. Ensuite, les paires de catégories sont itérativement regroupées
jusqu’a ce qu’il n’en reste qu'une. Cette technique requiert donc d’étre ca-
pable de calculer plusieurs similarités. La premiére est celle entre deux do-
cuments, la seconde est celle entre deux catégories, i.e. entre groupes de
documents. La similarité entre deux documents est fortement dépendante
du type de documents a classifier. Quant a la similarité entre groupes de
documents, elle est traditionnellement une agglomération des similarités
des paires de documents dans les deux catégories comparées (minimum,

maximum, moyenne...).

Nous proposons de remplacer ces métriques par une similarité sémantique
de groupe. La similarité entre deux documents peut en effet étre calculée
selon la similarité sémantique de leurs annotations. Pour comparer deux
groupes de documents, au lieu d’utiliser une agglomération des similarités
par paire des documents qu’elles contiennent, nous proposons (i) d’étique-
ter sémantiquement la nouvelle catégorie et (ii) d’utiliser cet étiquetage
sémantique pour la comparer avec les autres. L'étiquetage d’une catégorie
reprend notre algorithme d’indexation a la différence—importante—prés
que celui-ci inspecte les concepts plus généraux dans l'ontologie et utilise
un critére permettant de sélectionner ces concepts plus généraux au fureta

mesure que les catégories deviennent abstraites. Ainsi, la classification re-
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pose entierement sur l'utilisation de similarités sémantiques et le contenu
des documents n’est jamais pris en compte. Enfin, les arbres générés étant
binaires (chaque noeud contient deux enfants), nous les rendons plus ex-
ploitables par 'Homme en diminuant leur profondeur sur la base des simi-

larités sémantiques calculées entre les nceuds.

Ilen découle quela création des catégories est fortement dépendante de leur
étiquetage, et vice-versa. Par conséquent, nous proposons une approche
de catégorisation et d’étiquetage sémantique entiérement cohérente
au regard d’'une mesure de similarité sémantique (i.e. les étiquettes

coincident avec la classification).

II.II.2. Constitution de jeux de référence

Le principal probléeme rencontré dans notre approche était qu’il n’existait
pas de jeu d’évaluation permettant de tester sa fiabilité. En effet, la catégo-
risation hiérarchique dépend énormément des données catégorisées (d’ou
notre motivation a créer une méthode générique, encore une fois). De plus,
il n’existe pas non plus, a notre connaissance, de jeu de test pour catégori-

ser des données annotées sémantiquement.

Nous avons souhaité pallier ce manque en proposant un jeu d’évaluation.
Sur la base de marque-pages annotés extraits du site del.icio.us (Wetzker
et all, 20o8), Andrews et al. (2011) ont proposé un ensemble de marque-
pages annotés sémantiquement avec WordNet. Nous avons développé une
interface en ligne permettant de classifier manuellement des docu-
ments annotés sémantiquement et proposé l'outil adapté aux marque-
pages a des étudiants et chercheurs de I'école des mines d’Ales. Cet outil est

une contribution a part entiere car il a été con¢u dans l'unique but d’aider
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I'utilisateur a classifier les documents, en lui fournissant de nombreux ou-
tils visuels et en utilisant des moyens d’interaction intuitifs (par exemple,
par glisser-déposer). Cette interface est disponible a ’adresse suivante en

tant que démonstrateur : http://clustering.nicolasfiorini.info.

Les retours des utilisateurs nous ont permis de constituer un jeu d’évalua-
tion. L'ensemble des marque-pages a été divisé en 8 jeux de données : un
pour optimiser la méthode, les autres pour I’évaluer. Les classifications
fournies par les utilisateurs concernent donc les 7 jeux de données et consis-
tent en une arborescence de marque-pages dont chaque nceud est étiqueté
sémantiquement avec WordNet. Ces jeux de données répondent parfaite-
ment a notre désir d’approche générique puisqu’ils sont composés unique-
ment d’éléments annotés, sans aucune information sur le contenu de ces
éléments. Les arbres ainsi proposés peuvent servir de jeux de référence
pour évaluer la classification, mais aussi 1’étiquetage des catégories.
Les jeux de références sont bien sir a disposition sur Internet, a I'adresse

suivante : http://benchmark.nicolasfiorini.infd.

I1.I1.3. Evaluation de la méthode

L'évaluation porte sur deux points : la classification et I’étiquetage des ca-
tégories. Pour évaluer la classification, nous nous sommes appuyés sur des
mesures de distance d’arbres en comparant les arbres obtenus avecles arbres
réalisés par les opérateurs humains (que ’on appelle arbres experts). Tout
d’abord, nous avons observé les divergences entres les arbres experts entre
eux etdéduitun écarttype. Ensuite, nous avons comparé la distance moyenne
entre ’arbre obtenu et les arbres experts pour chaque jeu de test avec cet
écart type. Nous avons procédé de la méme facon pour évaluer une approche

classique de classification. Il apparait clairement que la classification sé-
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mantique est meilleure qu'une approche classique basée sur une ag-
glomération des similarités de paires de documents. Sur certains jeux
de données, on n’observe pas de différence plus grande entre les arbres
créés automatiquement et les arbres experts, qu’entre les arbres experts
entre eux. Le code source de I'approche, ainsi que les résultats obtenus sur
lesjeux deréférence sontdisponiblesa cette adresse : hittp://sc.nicolasfiorini.
infa.

L'évaluation des étiquettes sémantiques associées aux catégories consiste
a comparer, pour chaque arbre expert de chaque jeu de données, les éti-
quettes produites par notre méthode a celles données par l'utilisateur. La
qualité d’une étiquette est représentée par sa similarité sémantique avec
I’étiquette experte. Les similarités sont moyennées, ce qui constitue un
score pour chaque jeu de test. Nous avons comparé ces résultats a plusieurs
autres techniques d’étiquetage, a savoir (i) prendre I'ensemble des concepts
annotant les documents de la catégorie et (ii) utiliser exactement 1’algo-
rithme d’indexation présenté ci-dessus. Notre approche fournit de meil-
leures étiquettes que ces deux alternatives, prouvant qu’elle permet mieux
qu'une approche d’indexation de résumer un ensemble de concepts en
quelques concepts en utilisant les propriétés de généralisation/spécia-

lisation de I'ontologie.

III. Conclusions et ouverture

Nos travaux explorent la faisabilité et la pertinence de plusieurs objectifs

dans les domaines de I'indexation et de la catégorisation sémantiques.

1. Etudier l'impact de l'utilisation de similarités sémantiques.

Toutes nos applications sont basées sur des similarités sémantiques.
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Estimant qu’elles sont un excellent moyen d’exploiter la structure in-
hérente a une représentation de connaissance, nous proposons des
approches innovantes en indexation et catégorisation les utilisant.
Les résultats obtenus dans ces deux domaines suggerent que leur uti-

lisation devrait étre encouragée.

Proposer des approches génériques pour certains traitements basés sur la sémantique.
Parce qu’elles sont basées sur une description sémantique a I’aide des
concepts d’une ontologie, les approches que nous proposons pour la
manipulation de documents sont génériques. En effet, qu’il s’agisse
deRI, declassification oud’étiquetage, les mémes traitements peuvent
étre accordés a des images, des publications scientifiques, des génes,
etc. [lest possible, dans ces approches, de faire abstraction du contenu
des documents et la perte d'information due a ce choix semble com-
pensée par la qualité apportée par I'utilisation d’une base de connais-
sances. Bien siir, cette généricité n’empéche en aucun cas de réaliser
des méthodes hybrides en enrichissant une approche générique avec

une autre plus spécifique.

3. Analyserla place deT'opérateur humain dans le processus.

xXX11

Nos solutions visent a assister 'opérateur humain confronté a une
situation faisant appel a de hautes compétences cognitives. Ainsi la
place de I'expert reste un point clé de notre approche. Sans désir de
se subsister a lui, les différents traitements que nous proposons se
doivent d’étre tres fiables et d’apporter rapidement une réponse perti-
nente a ses attentes. C’est pourquoi notre évaluation tient systémati-
quement compte des experts : soit pour vérifier que l'interaction avec

le systeme est adaptée a son contexte (des tests plus poussés avec des



ergonomes devront étre envisagés), que la pertinence des résultats est
équivalente a celle produite par un humain, soit par I’étude du gain
de temps occasionné par 'introduction de traitements automatiques

dans un processus par exemple d’indexation.

4. Produire des approches algorithmiquement efficaces.
Ce manuscrit s’attarde sur les aspects algorithmiques des approches
réalisées pour valider leur pertinence dans un contexte ot le volume
dedonnéesest tres important. Nous avons démontré que les approches

sémantiques n’empéchent pas un passage a I’échelle.

Ces conclusions apportent de nouvelles interrogations, ouvertures et pers-
pectives. Tout d’abord, méme si USI a été concu et développé comme une
approche générique, nous n’avons pas pu tester sa pertinence dans tous
les domaines. Un effort a été réalisé concernant I'indexation d’articles bio-
médicaux, motivé par le fait qu'une communauté active anime ce champ
d’application. D’autres cas d’utilisations ont été étudiés dans ce manus-
crit comme une indexation de films, mais aucune évaluation formelle n’a
été faite a ce niveau. Il serait tres intéressant de tester, par exemple, cette
approche pour I'annotation sémantique de genes, en se basant sur leurs

séquences génétiques pour récupérer les genes voisins.

De plus, 'utilisation des bases de connaissances comme élément central de
nos approches limite leur application puisqu’elle suppose de disposer d'un
modéle de connaissance et de documents annotés sémantiquement avec
cemodele. Cette limite est a modérer cependant puisque de plus en plus de
tels modeles sont disponibles. Au méme titre que nous proposons toujours
le code source, les jeux d’évaluations et les résultats, ces efforts devraient

étre poursuivis. Nous avons trop de fois été confrontés au manque de don-
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nées nous empéchant de nous comparer a l’existant, ou simplement de va-
lider une approche, alors que 1'idéologie méme du Web Sémantique est de

partager et réutiliser les donnéesf.

Enfin, puisque BioASQ fédere les derniéres contributions dans le domaine
del'indexation automatique de papiers biomédicaux, il est possible de con-
naitre les méthodes qui ont permis les meilleurs résultats au challenge.
Bien que nous ayons adapté USI au contexte du challenge, nous n’avons
pas utilisé toutes les données mises a disposition (titre, résumé de publica-
tion, auteurs...). Nous supposons dans le manuscrit qu’enrichir USI avec
des approches d’apprentissage automatique, de traitement automatique
des langues ou de classification permettrait d’améliorer la qualité des an-
notations. Cependant, cela reste encore a prouver et constitue une réelle

perspective de recherche.

4The Semantic Web provides a common framework that allows data to be shared and reused across applica-
tion, enterprise, and community boundaries, Bttp://www.w3.01g/2001/sW/

XX1V


http://www.w3.org/2001/sw/

Short abstract

In order to improve the search and use of documents, Artificial Intelligence
has dedicated a lot of effort to the creation and use of knowledge bases such
as ontologies. They are graphs in which nodes represent a meaning unit—
a concept—and edges are their relationships. For example, this allows to
represent the concept “dog” as a subclass of the concept “mammal”. In-
dexing documents is a useful process for further processing and consists of
associating them with sets of terms that describe them. These terms can
be concepts from an ontology, in which case the annotation is said to be se-
mantic. Such annotations benefit from the inherent properties of ontolo-
gies: the absence of synonymy and polysemy. Most approaches designed
to annotate documents have to read them and extract concepts from this
reading. This means that the approach is dependent from the type of doc-
uments, as a text would not be processed the same way a picture or a gene
would be. Approaches that solely rely on semantic annotations can ignore
the document type, leading to generic processes. This has been proved

in Information Retrieval where researchers experienced approaches called
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semantic information retrieval that can fit any type of document.

This thesis capitalizes on genericity accessible through semantic anno-
tations to build novel systems and compare them to state-of-the-art ap-
proaches. To this end, we rely on semantic annotations coupled with se-
mantic similarity measures. Of course, such generic approach can then
be enriched with type-specific ones, which would increase the quality of
the results. This work explores the relevance of this paradigm for indexing
documents. The idea is to rely on already annotated close documents to an-
notate a target document. We defined a heuristic algorithm for this pur-
pose that uses the semantic annotations of these close documents and se-
mantic similarities to provide a generic indexing method. This resulted in
USI (User-oriented Semantic Indexer) that we showed to perform as well as
best current systems while being faster. This idea has been extended to an-
other task, clustering. Clustering is a very common process that is useful
for finding documents or understanding a set of documents. We propose a
hierarchical clustering algorithm that reuses the same components of clas-
sical methods to provide a novel one applicable to any kind of documents.
Another benefit of this approach is that when documents are grouped to-
gether, the groupisannotated by using our indexing algorithm. Therefore,
the result is not only a hierarchy of clusters containing documents as clus-
ters are actually described by concepts as well. This helps a lot to better
understand the result of the clustering. A particular attention has been
devoted in this work to algorithmic optimization and user-friendliness,
with interactive human-machine interfaces, that take into account im-

precision of human actions.

This thesis shows that apart from improving the results of classical ap-
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proaches, building conceptual approaches allows us to abstract them and
provide a generic framework. Yet, while bringing easy to setup meth-
ods—as long as documents are semantically annotated—, genericity does
not prevent us from mixing these methods with type-specific ones, in other

words creating hybrid methods.

XXVI1l






Dedicated to Maylin.

XX1X






Acknowledgements

My two supervisors, Jacky Montmain and Vincent Ranwez, have been of
great help during this thesis and I would like to thank them first. Jacky
Montmain gave his fantastic point of view on many topics that I would
never have had otherwise. Vincent Ranwez provided me with his great ex-
pertise regarding algorithm optimization and clues for my research. Sylvie
Ranwez, my advisor, has been tremendously helpful throughout these th-
ree years by guiding me and making my life at the lab so easy and for that,

[ am truely grateful.

I can’t thank the two reporters of this thesis enough, Pierre Zweigenbaum
and Eric Gaussier, for having accepted to review it. In fact, all members of
the committee of the PhD defense have asked many relevant questions that
provided valuable perspectives for my work. These questions or remarks
also highlighted a few research interests that I did not consider so far. I
am therefore really happy for the input they all took time to give me and I

deeply thank Pierre Zweigenbaum, Eric Gaussier, Patrice Bellot, Marianne

XXX1



Huchard and Zhiyong Lu.

My coworkers played arole in my every day motivation and pleasure. Sébas-
tien Harispe deserves special thanks for his help with the Semantic Mea-
sures Library that he created, which is a key element of my whole work.
Abdelhak Imoussaten put me back in shape at some point (now the writing
up wrecks everything), Iam glad he proposed me so many tennis matches—
besides, his eternal good mood is a great source of self inspiration in life. I
wish Stéphane Billaud a lot of joy with his newborn son, his presence and
the discussions we had were greatly appreciated. Pierre-Antoine Jean, de-
spite his recent arrival in the office has been a incredible pal to share time
with. Ialso thank the whole PhD student crew of the lab for all the good
moments: Sami Dalhoumi, Blazo Nastov, Abderrahman Mokni, Darshan

Venkatrayappa, Mirsad Buljubasi¢ and Diadié Sow.

I also want to express my deepest gratitude to Moreno Mitrovi¢, a.k.a 9t
and recently a.k.a my best man. You convinced me to start the PhD adven-
tureand I have noregretatall. Iam looking forward to discussing with you
about all these topics we fancy and most of all, to working with you again.
Two other great friends, Benjamin Chadouteau and Matthieu Thomas have
been here for most of the entertainment I had these years and we all know

how important those moments are. Thank you guys.

Many thanks to all the people I had the opportunity to work with aside
from the doctoral work. Renata Lemos for a fantastic data extraction project
that has been challenging on many aspects but your attitude contributed
a lot to my motivation and I learnt a lot thanks to it. Freddy Xuhui Hu,
whois sometimes in need of French data, for highlighting very interesting

rules in French that I did not even realize. Linguistics become even more

xxxii



magical with you for a newbie like me! Olivier Biberstein for coming a few
months in Nimes and sharing his Swiss enthusiasm along his vast knowl-
edge. The LIRMM squad, Vincent Berry, Anne-Muriel Chifolleau, Vincent
Lefort, Frangois Chevenet for their support before and during the PhD. I

think you have been the reason of my ambition for the five last years.

My Master’s internship in the UK definitely changed my life and impacted
many of my choices afterwards. I was priviledged to meet fantastic friends,
Elaine Schmidt, Tarun Kumar, Anthony Davidson, James Willmoth, who
made my stay so wonderful. Their attitude has been a tremendous source
of inspiration since then and I am really happy to have met them. My work
at the EBI, supervised by Javier Herrero, helped in convincing me to pursue
with a PhD. Thank you Javier for your motivation and ambition at any mo-

ment, you really played a role in my choices and I am grateful for that.

I end these acknowledgements with a big thank you to my family. Olivier
and Nathalie have always been my examples in life, I would not have been
able to do all this without them. Huge thanks also to every other family
member. The list would be too long, but to cite a few, thank you Eliane,
Sophie, Xavier, Angélique, Christian, Jean-Michel, Brigitte & René & their
children. My days are illuminated by Mathilde’s love, who supports me in
every situation. None of this would have been possible without you. We
now share our lives with Maylin to whom I am happy—and I admit a bit
proud—to dedicate this work. Finally, I would like to have a thought of love

in memory of Bruno, Yves and Simone.

XXX111






Contents

HAPTER

Introduction

L.1 [Ceneralcontexi

.2 [niormafion retrieval, indexing and clustering

L.2.1] |lhe InTormation Retrieval rield

L.2.2 A need Ior indexed documents

L.2.3 [[he 1mportance and use of clustering

1.3 [Ihetrend ol knowledge-based systemg

L.3.1 [nierring irom Knowledge baseg

1.3.2 lerminology and iormal definitions
L.4 [Objectives and context of the thesig
i.§ [Chapter outlineg

F S 5 E & ] oo oo oo eo

XXXV



EHAPTER 2

Semantic 1ndexing|

B.J Abstract
23 Related worK

p.2.1 EXxtracting concepts irom documents

p.2.2 |Ilherise of Machine Learning and 1ts [imitg

p.2.3 Evaluation datasets and metricy

.3 Moftivation & positioning

B.4 [USI:ageneric User-oriented Semantic Indexer

p.4.1 Selection of neighboring documenty
B.4.3 Modeling the objectives
B.4.3 Rlgorithm detail§
B.§ [ncluding the user in the tasK
p.5.1 [Prior to annotating
R.5.2 After annotating
. [Evaluafion of the approach: the BioASQ 3a task

2.6.1 [Lhe optimal number oI neighbory

R2.6.2 Questioning the system measures

p.6.3 [ncluding the baselines
p.06.4 Results of the challengq

.7 [Extension of USIto several contextg

R.7.1 [Enrichment ol a scientific database: bioUS]

R.7.2 Annotation oI movies: moviesuUs]

.8 [Chapter summary

XXXV1

RIERFRRREEREZ R E E R &S &R e E]



EHAPTER ;I

Semantic clustering and cluster labeling

B.1
R.7 [Generalinformation on hierarchical clustering

B.3 [Related workK

R.3.1 Semantic clustering

R.3.2 bemantic cluster [abeling

R.4 [Motivation & positioning

B.§ Benefits of semanftic clustering

R.5.1 A consistent and accurate clustering approach

B.5.2 Labeling the clusters

3. [Algorithm and the study of complexity]
BR.6.1 Algorithm detail§
R.6.2 Complexity analysig

B.7 [Post-processing

B.§ [Creation oi a benchmark
B.8.1 Original datq
R.8.2 Obtaining expert data
B.d [Evaluation of clustering and labeling]
R.9.1 Results ol clustering
B.9.2 Results of labeling

R.1g Complementarity of labelg

R.11] [Chapter summary

EEEREEEEREREEREEREE

I~
N

2 =] & & e B &

XXXVil



EHAPTER l—ll

167

Conclusion

k.1 [Onthesaliency ol knowledge-based systemsin IR

. ©On the genericity brought by semanticg

k.3 [Perspectives

Appendix

A1 [istof abbreviationg

[A.2 [List of important mathematical notationg

XXXViii

IS

] &l



List of Figures

p.1 ClassicalprocessofIR,) . . . . . . . . . . ... ..

L.2 Visualization of k-means method). . . . . . . . . .

L.3 Clustering and cluster labelingin IR, . . . . . . ..

1.4 Comparison oi two similarities based on the snortest patn.|

.1 Overview ol the latent semantic indexing. . . . . .

.2 Ihe two mailn processing phasesor USL,| . . . . . . .

2.3 Minimal example ol the structure used prior to optimization.|

p.4 Restriction ol the M, matrix . . . . . . . . . . ..

b.5 Restricted matrix and MaxCol; listford;)] . . . . . .

2.6 oStructures 1for optimizing the computation of SumMaxRow

.7 Example of map displayed to theuser). . . . .

R.5 Semantic score variation in different contexts.|

p.9 Visually helpingtheuser,) . . . . . . . . . . . . ..

.10 Ihe1mpact of changing the numbper of neignbors. . .

EENONEEBREEBEEBE BER o

p.11 Impact ot different settingson USIL,| . . . . . . . . .

XXX1X



x1

.12 Ihe three steps in bioUsl1llustrated.) . . . . . . . . . . . . m

p.13 The three steps in moviesUSIillustrated] . . . . . . . . . . LS

R.1 Differences between flat and hierarchical clustering] . . . . [og

R.2_The hierarchical agglomerative clustering) . . . . . . . . . o7

R.3_Craph Representations for each documentin Yoo and Hu (200614

B.4 Representationormetadata. . . . . . . . « « « « o« o . .

B.5 HAC adapted to semantically annotated documents.|

B.60 Comparison oi cluster trees with(out) branch lengths. . . .

R.z__Distribution of distancesinatree. . . . . . . . . . . . . .

R.o 1he imitation oI relylng on an agglomerative algorithm |

R.9 lmpact ol the post-processing on the trees.| . . . . . . . . .

B.10 Example of 4 bookmark signature.) . . . . . . . . . . . . .

R.12 Ihe bookmark signatures helps in nnding new clusters. . . .

R.13 Users teedback on the clustering intertace) . . . . . . . . .

R.14 Evaluation of the semantc clustering. . . . . . . . . . ..

B.15 Semantic clustering processing time.| . . . . . . . . . . . .

R.16 Cluster labelingresults., . . . . . . . . . . . . . . . . ...

B.17 Label Size of difierent approaches. . . . . . . . . . . . . . .

117
120G
39
fi4a
41
43
4G
RB.11 Ihe 1nteriace 1or the creation of the benchmark . . . . . . . m
f5d
51
155
L4
59
L59




List of Tables

k.1

Comparison of USIwithITR)] . . . . . . . . . ..

2.2

Scores obtalned with and without the map. . . . .

R.3

Systems submitted to B10ASQ 2015, . . . . . . . .

R.4

F-scores obtained with different IC metrics, . . . .

R.5

r-score of USI systems on the B10ASU5000 dataset.|

ooooo

.....

ooooo

ooooo

.....

B.1

A set o1 observations described Dy tour properties (kisher, 1957).

R.2

Evaluation of clusteringresults]. . . . . . . . . . . . . .. 154

xli






Introduction

Contents
.1 _General contexi B
.2 Information retrieval, indexing and clustering B
L3 Thetrend ol knowledge-based system§g ig
L.4 ODbjectives and context of the thesiy D8

L.5

Chapter outliney

Sl







1.1 +* General context

Artificial Intelligence is the building of computer programs which perform tasks which
are, for the moment, performed in a more satisfactory way by humans because they
require high level mental processes such as: perception learning, memory organization

and critical reasoning.

— Marvin Lee Minsky

1.1. General context

The above definition of Artificial Intelligence (AI¥) by Marvin Lee Minsky,
one of its creators, shows the wideness of the field that can be perceived
through the diversity and the abstraction of the human cognitive processes
Al tries to perform. Russell and Norvig (1995) classify Al into four cate-
gories: thinking humanly, acting humanly, thinking rationally and act-
ing rationally. These are the trends that have existed—and still exist—in
Al with their respective objectives. A rational system seeks to provide the
best solution while others seek to mimic the Human. They also differenti-
ate the process of acting, e.g. communicating, from that of thinking, e.g.

reasoning.

The processes involving Al can thus be discrete such as the recommender
systems—think of Amazon—, or, on the contrary very obvious like a chess
playing program. This shows again the diversity of Alin terms of use, goal

and implementation: playing chess seems intuitively very different from

A comprehensive list of abbreviations used in this thesis is available in Appendix A1
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recommending a product to a user. However, the foundations of those two
are quite similar as they are built upon key pillars of AlL. The most obvious
certainly is Machine Learning (ML), which is a whole Al domain that aims
at building models out of several sources in order to make predictions or
decisions. Instead of relying on a model or rules created by a human, the
system learns from examples and experiences with a set of features that
are considered important by the human. The idea behind it is that the sys-
tem will converge towards human-like predictions or decisions when the
number of examples and experiments increases. Each method hasits own
specifications, the so-called SVM (Support Vector Machine) excels in divid-
ing an input space into two regions and L2R (Learning to Rank) is best for
ordering the data, to cite a few. While ML approaches are touted for offer-
ing scalable solutions and generally good results, they require a learning
phase for which the behaviour of the predefined features can be observed

to model the problem.

This PhD thesis seeks to study methods that are not based on ML. Indeed,
inmany fields like those we focus on (see the next sections), approaches dif-
fer from a few learned features and slightly different ML algorithms lead to
slightly different results. However, some of these fields can benefit from
the availability of Knowledge Representations (KR), which should, in the-
ory, improve the quality of the results provided by the systems, e.g. by
being able to infer better predictions. At least, such approaches would be
novel and it would be worth studying how they behave compared to clas-
sical ones. The few goals we set are to find out how to best use KRs, how
they can be useful and to compare them with state-of-the-art classical ML

implementations.



1.2 % Information retrieval, indexing and clustering

Clobally, this thesis project falls within the scope of Information Retrieval
as we concentrate on two related domains: indexing and clustering. The
next sections thus present these fields and their stakes before describing
the benefits and uses of knowledge-based systems. Once this basis has
been set, we explain the objectives of the thesis in more detail and its out-

line.

1.2. Information retrieval, indexing and clustering

Nowadays, many tasks we rely on are based on Al systems. In fact, ev-
erything is called smart. We have smartphones, we (will) live in smart
homes that (will) belong to smart cities. The most famous Al process in our
daily habits is certainly Information Retrieval (IR), usually represented by
Google or Bing search engines. Accessing information is so frequent and
easy that our way of thinking has changed (Sparrow et all, po11). That is,
instead of remembering the actual information, we remember how to ac-
cessit: with which keywords, on which website, etc. The Internet became,
in some way, an external storage of our memory. This section provides a

short overview of IR and its relationship with indexing and clustering.

1.2.1. THE INFORMATION RETRIEVAL FIELD

In their so-called book, Baeza-Yates and Ribeiro-Netd (1999) point out that
Modern Information Retrieval “deals with the representation, storage, organization

of, and access toinformation items”. “Information item” is soon replaced by “doc-

ument”, which is an important recurring word in this thesis that needs to
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X =
l
|

Figure1.1.: Classical process of IR.

be defined. We refer to it the same way as the Oxford Dictionaries: “A piece
of written, printed, or electronic matter that provides information or evidence or that serves
as an official record”®. A document can thus be a scientific paper, a video or
a gene sequence, to cite a few. All of them present the same properties of

providing information while being stored electronically.

The proposed IR definition shows how wide the field is, which explains
why an entire book is dedicated to it. However, the process of IR can be
easily summarized by the Figure i.3. A user expresses an information need
as a query and submits it to the IR system (IRS). The IRS relies on a cor-
pus of documents that it uses to find the ones to return to the user. To
this end, it matches the query with them and associates each document
with a relevance score. Matching is different in essence from associating
a score since, for reasons of efficiency, not all documents of the corpus are

scanned and scored. Instead, the index, such as an inverted file (see the

’http://www.oxforddictionaries.com/definition/english/document/t=1, as of Novem-
ber 9, 2015
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next section on indexing), provides a simple way to find matches first, and
then computing relevance scores. Results are ordered according to this rel-
evance score and displayed to the user. A crucial step for the matching is
the indexing of documents as it allows the IRS to retrieve the potentially
relevant documents quickly. Even if this Figure is very simple to under-
stand, each step is the result of an extensive research. To name a few, the
transformation of an information need into a query is helped by the query
expansion field; computing relevance of the documents depends on many
factors thatresulted in many models; and the display of results can assume
many forms (e.g., ordered list, synthetic semantic map), each achieving

a different goal.

Indexing appears to be a fundamental element in IR pipelines. In fact, it
is crucial to allow the matching with the queries in a reasonnable time
as it provides a logical representation of the documents that compose the

corpus.

1.2.2. A NEED FOR INDEXED DOCUMENTS

The assessment of the relevance of each document is the most important
step as it directly impacts the results. Therefore, many models have been
proposed in the literature to improve the quality of IRSs, for most of which
the index is at the basis. Indeed, the representation of the documents in
the index is usually a set of keywords which are used for matching the
query with the documents, but also to compute the relevance faster than

by using the whole document.

The index is what is called an inverted file that is defined as follows. Con-
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sider a corpus D? of three documents d;,d,,d; € D. Each document is
associated with a set of terms Ty, that represent it so for example Ty, =
{t1, .}, Ta, = {t1, 3}, Ta, = {t1, 1, t3}. Building an inverted file consists in

mapping the documents to the terms, in this case:

tl = {db d27 d3}
t, = {d;, ds}
t; = {d,,ds}

By using an inverted file, matching a query with the corpus is much faster
as we do not have to browse all documents to find those that are annotated
with the terms corresponding to the query. We just need to get the docu-

ments associated to the keys that correspond to the query terms.

In order to avoid confusion, let us clear up some terms that are com-
monly used throughout this thesis. The fact of associating words—
or, further on, concepts—with documents is usually called annotat-
ing. These annotations are then used to build up an index for an IRS,
by following the process illustrated above through an example. The
most important part is thus the actual association on which we focus
and not its implementation in IRSs, so following many authors, we

denote this association by indexing or annotating interchangeably.

As an example of the use of the index, let us take the most simple model

for IR, the boolean model (Lancaster and Gallup, 1973). Classical boolean

3A list of important and common mathematical notations is provided in Appendix B3
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operators—AND (A), OR (V) and NOT (—)—are used in queries to make a log-
ical representation of the user need. For example, consider the following
query q = t; A —ts. In this case, d;, d,, d; are potential matches but only the
document d; perfectly satisfies the logical representation. The relevance
score is binary, which means it is 1 if the document annotation satisfies
the boolean expression, 0 otherwise. Such an approach cannot propose an
ordered list of results (apart from a list containing documents with a rel-
evance of 1 first) and is limited in most contexts where we do not need a

query as strict as a logical representation.

While the boolean model relies on the set theory, two other paradigms
have been at the origin of many models: algebra and probability theories.
The vector models (Salton et all, 1975) rely on algebra and need weighted
term vectors for the query and the documents. They consist of weights that
correspond to the terms annotating the documents or in the query. The
similarity of two vectors can then be calculated by using algebraic func-
tion such as the cosine similarity. The probabilistic models (Maron and
Kuhns, 1960; Robertson et all, 1995) model the probability of a given doc-
ument to be relevant w.r.t the query. The elementary probabilities that
are used in those models are estimated by learning from a set of examples.
Boolean, vector and probabilistic models all highly rely on the index, that
is the correspondance between each document and a set of terms. Some-
times a weight or frequency is also associated with the terms to refine the
relevance scores, but the actual association of document-terms is therefore

crucial in IR.
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1.2.3. THE IMPORTANCE AND USE OF CLUSTERING

Clustering is useful for organizing documents and often allows for a bet-
ter understanding of the underlying nature or meaning of data. Let us
consider the whole set of articles of a newspaper in the last 10 years. An
interesting study is to understand the trends of this newspaper: does it
emphasize politics, sport, local news? Clustering the articles gives a good
idea of these orientations. Biologists also frequently cluster genes to iden-
tify biological processes involved in molecular response to a change of en-
vironment. By storing the expression data of hundreds of genes in differ-
ent environments—or after different stimuli—, they cluster these genes ac-
cording to their expression patterns. The function of some unknown genes
can appear to be part of the same metabolic pathway as the other known

ones, for instance.

The whole point of clustering is to find groups of similar items that are dif-
ferent from other groups. As a result, the definition of a distance metric is
the most important choice in clustering (Manning et al., 20o8). Cluster-
ing methods are numerous and depend on the type of data: numeric val-
ues and textual ones are compared differently. Different algorithms may
lead to different clusters as they come with different requirements and ob-
jectives. If you need a hierarchical representation of classes, you will use
hierarchical clustering (e.g., in systematic biology where you need a phyloge-
netic tree); if you have a predefined number of clusters you will opt for k-
means (e.g., youwant to find the 5 main topics of a newspaper), and so on.
The distance measures implicitly determine the feature(s) you will use for
clustering the documents. However, note that several distance measures

can rely on the same features, while providing a great diversity of output

10
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clusters. Manning et al/ (2008) also point out that there are two important
paradigms called soft and hard clustering. The former aims at providing for
each document a probability distribution over the classes, while the latter

assigns each document to one class only.

The Figure [.3 illustrates the usual k-means method that follows Lloyd’s al-
gorithm (Lloyd, 1983) to better understand the stakes of clustering in gen-
eral. This approach proposes to identify k clusters among a set of items.
It all starts by randomly defining k points as cluster means (1). Then, all
items are assigned to the closest mean (2). The new means are computed
regarding the items identified in each cluster (3). Assignment of items (2)
and recomputation of the means (3) is done repeatedly until the means stop

changing (4), k clusters are identified.

As we are facing an increasing volume of data, clustering appears to be a
very advantageous course of action in many fields. Recently, in IR, some
effort has been devoted to result diversification, motivated by a few objec-
tives. We have all faced this problem one day, where all results of a search
are literally the same ones. In fact, Clarke et al| (2011) even make the as-
sumption that the first results of a search have good odds to be very similar
to other searches. In this case, if the solution to the need is not in the
first result, we have to crawl among the result pages to find something of
interest with difficulty. Clustering is one solution among others for diver-
sifying the results (Collapudi and Sharma, 2009). The idea is to cluster the
results so that groups of results emerge. These groups can represent dif-
ferent aspects or meaning of the topic. For example for the query “nuclear
power plant”, results could be grouped in ecological, political and energetic

aspects. In order to diversify the results, once the clusters have been iden-

11
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Visualization of k-means method with k = 3. Step (1) corre-
sponds to identifying cluster means at random. Step (2) asso-
ciates each item to the closest mean. Step (3) recalculates the
cluster means according to their associated items. Step (2) and
(3) are repeated until the means stop changing (4).
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tified, the system can for example display the most relevant document(s)
of each cluster to increase the user’s satisfaction. Some authors argue that
it also allows to overcome ambiguity (Agrawal et alJ, oog; Skoutas et al.,
2010) by automatically identifying the meaningful groups of documents

associated to a query, since ambiguous words such as “Jaguar”, “Java” or

“Flash” may hamper IRSs a lot.

Finally, Manningetal. (2008) and Role and Nadif (2014)) both highlight that
the labeling of clustersis an important step when the categories are not pre-
defined. The labeling consists in associating a description to the clusters
that are created, which seems related, if not similar, to document annota-
tion. The only difference lies in the fact that we need to annotate a group of
documents instead of only one. That is, identifying the reason why docu-
ments have been gathered in a same cluster. The application of this task in
IR as an example is for subtopic retrieval. Bernardini et al. (2009) provide a
screenshot (see Figure [.3) of their system in which the query is “artificial
intelligence”. Apart from the results for this query, labeled clusters of doc-
uments are presented, containing, for example, “computer science”, “ar-
tificial intelligence research”, “john mccarthy”, “science and technology”,
etc. Automatically labeling these clusters is tremendously useful for the

user who can refine his/her query.

Although we decided to use the terms “indexing” and “annotating”
interchangeably, we think that “labeling” has a different meaning
and it is used accordingly in this thesis. When clusters are labeled,
the labels are supposed to be quite abstract (they represent the con-

tent of the whole cluster) but most of all they should be composed of

13
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artificial intelligence m

All results (100)

» computer science (21)
» artificial intelligence research (4)
» john mccarthy (4)
artificial intelligence a modern
” approach (3)
» definition of artificial intelligence (4)
» sclence and technology (3)
» term artificial intelligence (5)
discussion of artificial intelligence
“@
» history al artificial intelligence (3)
» artificial intelligence ail attempt (2)

[+

TOP 100 RESULTS OF RETRIEVED FOR THE QUERY ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE - WIKIPEDIA, THE FREE
ENCYCLOPEDIA
2.4 Evaluating artificial intelligence. 2.5 Competitions and prizes ... Several futurists argue
that artificial intelligence will transcend the limits ...
hittp://en.wikipedia.org/wiki/Artificial_intelligence
ARTIFICIAL INTELLIGENCE: DEFINITION FROM ANSWERS.COM
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ARTIFICIAL INTELLIGENCE
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'Artificial Intelligence: Al'is In Your Top 15, Post It! Sickloke ...
http.//www.imdb.comytitle/tt0212720/
AMERICAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE
Nonprofit scientific society devoted to the promotion and advancement of artificial
intelligence.
http.//www.aaai.org/
ARTIFICIAL INTELLIGENCE
Artificial Intelligence and Star Wars' Droids ... George Lucas used artificial intelligence to
create robots in "Star Wars. ...
http.//www.history.com/encyclopedia.do?articleld=201579
ARTIFICIAL INTELLIGENCE - ELSEVIER
« Journals > Artificial Intelligence home. Artificial Intelligence. An International ...
Artificial Intelligence, which commenced publication in 1970, is now the ...
http.//www.elsevier.com/wps/find/journaldescription.cws_home/505601/description#description ‘:
BIBLIOGRAPHIES ON ARTIFICIAL INTELLIGENCE v

Figure 1.3.: The system of Bernardini et al] (2009) provides labeled clusters
on the left to refine the query.
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a few words to be instantly understood by the user. There is thus a
divergence of objectives: while indexing aims at associating a sharp
set or terms to a document, labeling seeks to give the big picture of a
cluster. “Concision” is another term used in two different contexts
in this thesis. When referring to “annotating”, concision impacts
further automated processes whereas when associated with “label-

ing” it seeks to make the label easily understandable.

1.3. The trend of knowledge-based systems

Intuitively, it seems that knowledge is at the basis of any intelligence and
thereby of AL As explained in the general context section, this thesis deals
with the use of knowledge in indexing and clustering tasks in order to Fig-
ure out the pros and cons of such approaches compared to more classical
ones. This section thus aims at laying the foundations of knowledge as it

is used in knowledge-based systems.

Russell and Norvig (1995) explain that the so called Turing test requires,
among other things, a Knowledge Representation (KR). Indeed, we have
to know things if we want to infer conclusions. The KR is thus the storage of
information that a machine would use to pass the Turing test. They also
declare that “all theskills needed for the Turing Test also allow an agent to act rationally,
Knowledge Representation and reasoning enable agents to reach good decisions”. Many
definitions of KR have been proposed in the literature, one of which the
ontology is a famous formal representative (Harispe et al, o15b; Sy et all,

2012).
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A knowledge-based system is therefore a system that makes use of a KR.
In several fields, for instance in biomedicine, the presence of knowledge
is crucial for the systems to analyze, process, and organize the documents
(Ben Abacha and Zweigenbaum), 2o15). Recently, a lot of effort has been
invested into the creation of such KRs, particularly in the biomedical field
which requires a high level of expertise and accuracy (Smith et al., 20o7).
It seems obvious that the stakes of systems in this field are high as medical
decisions or diagnoses may depend on them. As a result, the researchers
mainly decided to rely on KR in a quest to improve the quality of their sys-

tems and therefore focused on semantics.

1.3.1. INFERRING FROM KNOWLEDGE BASES

The idea of a Semantic Web emerged from Tim Berners Lee who defined
it as a Web understandable by machines as well as humans. The idea is to
enrich the current Web with knowledge that computers can process, there-
fore enhancing or facilitating the use of the Internet (Berners-Lee et all,
2001). This paradigm is criticized on the grounds of feasibility matters and,
so far, the Semantic Web per se is nonexistent. However, there exist many
proofs of the use of relying on a knowledge-enriched system in specific do-

mains.

IR has been experienced with the use of KRs and results show a clear im-
provement compared to term-based approaches (Haavand Lubi, 2oo1). The
main problem exposed regarding classical approaches is that they suffer
from synonymy. As an example, a query containing “tumor” may lead
to different results from that of “carcinoma”, although the terms are syn-

onyms (Ciunchiglia et all, 2oog; Bhagdev et all, 2008). Stokoe et al.| (2003)
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explain that ambiguity can also hamper these approaches because even
when the query and the results perfectly match, the meaning in each may
be different. Besides the terms ambiguity, another downside is the lack of
connection among the terms in general. When we think about the terms
“dog” and “cat”, we imagine a sort of connection between them. Both are
domestic animals, mammals, and the cartoons we used to watch in our
childhood stressed enough that dogs do not like cats. Those connections
we know about cats and dogs are not grammatical (i.e. the words cat and
dog are not grammatically related) and refer to something that is not lan-
guage but knowledge. Then, when a system has the ability to consider
some knowledge, such connections, it can outperform classical methods
in some cases by retrieving documents that better suit users’ needs. Imag-
ine, for example, that there is no perfect match for a given query: docu-
ments that are indexed by close terms—i.e. connected to the ones of the
query by knowledge—might consitute a good result to be proposed instead.
In order to better understand how knowledge is used in those systems, let
us define the terminology and the mathematical objects that will be used

throughout this thesis.

1.3.2. TERMINOLOGY AND FORMAL DEFINITIONS

As pointed out by Sy et alJ (2012) (in French), the literature is sometimes
confused with the use of knowledge-related terms. Although we do not
pretend to exhaustively describe each term and its limits, the following

gives an overview of the scope of our work regarding KR.
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1.3.2.1. Vocabulary, taxonomy, thesaurus and ontology

Vocabulary, taxonomy, thesaurus and ontology all are KRs. What differs
among those KRs is mainly the degree of formality of their definitions and
their richness. The vocabulary, also referred to as controlled vocabulary,
is not formal and simply proposes to explicitly enumerate the terms in
an unambiguous and non-redundant way called concepts. This suggests
that each concept is unique and has only one meaning within this model.
The taxonomy is built upon the vocabulary by adding a hierarchy, that is,
parent-child relationships representing the idea of generalization and spe-
cialization (the concept mamMAL is more abstract than the concept car).
The thesaurusenriches the taxonomy representation by adding other kinds
of relationships, such asrelated_to. The ontology difters by its richer formal-
ism and expresses axioms and restrictions (Staab and Studer, 2013). Even
though these differences have a great impact on the creation of KRs, it is
important to note that they are usually less considered when these KRs are
used in IR. In other words, the degree of formality mostly matters for the
creators who have torespectit, not directly for the users except through the
efficiency and relevance of the results of their systems or the operations al-

lowed with the chosen KRs.

Formally, Maedche and Staab (2001) proposed a definition of an ontology

that can be derived as follows (Sy et all, 2o13).

Definition 1 ONTOLOGY: Anontology 0 is definedas® = {C, R, Hc, Rel, Ax} such
that:

« Cisasetof concepts;

18
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e Hcisataxonomy organizing the concepts C with multiple inheritance;
* Risaset of nontaxonomic relations described by their domain and range notation;

e Rel: R x C x C — {0;1} associates each non-taxonomic relation with the pairs
of concepts satisfying this relationship. Sayr € R is a non-taxonomic relationship
and (cx, cy) € C*are two concepts, then Rel(t, ¢y, ¢y) = 1if there exists a non-

taxonomic relationship r between them, Rel(, cx, ¢y) = O otherwise;
 Axisaset of axioms that describe additional constraints on the ontology to infer im-

plicit facts.

As Harispe (2014) notes, the hierarchy # formally expresses the relation-
ship of concepts as it is a non-strict partial order of C. It defines the binary

relation < over C, which is
- reflexive: Vce C,c < c,
 antisymmetric: Vu,ve C,(u <vAv=<u) = u=yv,
e transitive: Vu,v,w € C,(U VAV W) — u=<w,

All the notations relative to the definition on the ontology are kept through-
out the thesis. Now that a specific KR has been formally defined, let us

explain how it is intensively used in our projects.

1.3.2.2. Anoverview of similarity measures

The human mind has the innate ability of comparing concepts. In fact,
comparing is at the basis of many operations such as learning. When one

encounters a situation similar to a previously encountered one, the user
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can detect the similarity with the previous experience and use the knowl-
edge acquired the previous time to solve the new problem (Holyoak and
Kohl, 1987). Therefore Al extensively exploits algorithms that are able to as-
sess similarities between “entities” in decision processes, recommender sys-

tems or information retrieval systems, to cite a few.

The field of similarity measures (SM) is wide and has been subject to many
contributions (Harispe et alJ, 2o14b), pursuing the idea that computing
similarities of pairs of concepts is crucial in order to mimic the human
thinking. This thesis focuses on graph-based SMs, i.e. SMs that assume
that a graph-based KR is available for a given domain—vocabularies and
corpus-based measures are thus not concerned. This section aims to pro-
vide aninsightinto what we call similarity measures and some of their def-
initions. A more comprehensive work on this topic is available in Harispe

etall (2o15D).

There are two ways of comparing concepts through a semantic measure
in the light of relationships that have been defined or that can be assessed
from graph-based KRs. The first one is semantic similarity, the second one
is called semantic proximity or relatedness. Semantic Similarity (SS) mea-
sures are often associated with the substituability property (the more a con-
cept can be substituted by another, the more they are similar). They only
exploit taxonomic relationships #Hc of the KRs. Semantic proximity or re-
latedness measure, on the other hand, are associated with conceptual evo-
cation: givena concept, what other concepts come to mind (Pedersen etall,
2007). For instance, NAIL evokes HAMMER, TOOTHBRUSH evokes TOOTH or
ToOTHPASTE. To this end, the semantic proximity or relatedness uses the

whole set of relationships {#c, R} provided by an ontology. Harispe et al.
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(2015D), following the work of Resnik (1999) and Pedersen et al.| (2007) thus

define semantic proximity and similarity as follows.

Definition 2 SEMANTIC PROXIMITY OR RELATEDNESS: the strength of the seman-
ticinteractions between two elements with no restrictions on the types of the semantic links

considered.

Definition 3 SEMANTIC SIMILARITY: subset of the notion of semantic relatedness only
considering taxonomic relationships in the evaluation of the semantic interaction between

two elements.

In order to compute the SS of two nodes (i.e., concepts) belonging to a
graph such as an ontology, several directions have been tried out. Graph
traversalis one of them and comes from the graph theory field. The shortest-
path is a famous problem that has been exploited and adapted to SSs by
Rada et al) (1989), while Fouss et al| (2007) chose to rely on a random walk
strategy. Graph-based measures that use the whole set of relationships
provided by the graph are called proximity measures. Semantic similarity
measures (SSM) are restricted to the is_a relationship and need an acyclic
graph instead that is provided by the restriction of the Definition [ below.
Let us thus define the restriction of the ontology from Definition ] applied
to obtain Or., the directed acyclic graph that allows us to use most of the

SMs.

Definition 4 Thetaxonomy (Tax) restriction O1ay of an ontology 0 is defined as 01y =

{C, Hc}.
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Since the thesaurus differs from an ontology by the absence of Ax, the
same restriction may be applied when a thesaurus is used. That is, say
o is a thesaurus such as w = {C, R, Hc,Rel} and 6 = {C, R, Hc, Rel, Ax} is

an ontology, then wrax = Orax = {C, Hc}.

Although it has been explained that the SSMs we use rely on taxonomic
relationships, we still need to describe how this taxonomy is used to assess

the similarity of a pair of concepts.

1.3.2.3. Information Content

The SSMs our work uses are based on Information Theory, which implies
the definition of an Information Content (IC) function that aims at express-
ing the amount of information conveyed by a given concept. Those ICs fol-
low the guidelines of Shannon’s information theory (Shannon, 1948), i.e.
the more likely a concept is to be used, the less informative it is. From this
paradigm, two main classes of ICs emerged: intrinsic and extrinsic ICs.
Intrisic ICs solely rely on the graph structure (i.e. the KR model) while ex-
trinsic ones also consider a corpus of texts associated with the KR. In 1995,
Resnik (Resnik, 1995) proposed an extrinsic IC, here denoted by ICgesnix(c),
based on the probability p(c) of encountering an instance of concept c de-

fined as follows.

p(c) = —~ (1.1)

Z(c) is the set of instances of c, that is to say the number of occurrences of
cin a corpus or in a KR—represented by c itself and its descendants. [I| is

the total number of instances of all concepts in the corpus. Then,
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ICresnix(C) = —log(p(c)) = log(|1]) — log(Z(c)). (1.2)

Therefore with this definition, say root is the concept at the root of the KR,
p(root) = 150 ICgesnix(root) = 0 and the value increases when the concepts
are lessrepresented in the corpus orin the KR, i.e. when they become more

specific.

Although such an IC captures the specificity of concepts from several sour-
ces (KR, corpus), it may suffer from inconsistencies between the corpus
and KR data. In other words, the corpus should have a wide coverage of
the domain and not be composed of documents that focus on one part of
the KR for instance. Otherwise, the representation of a given concept in
the corpus and in the KR may diverge, which would lead to discrepancies,
e.g. a very specific concept in the KR that appears frequently in the cor-
pus. In some cases, considering these inconsistencies might be desired,
but in most cases intrinsic ICs are good estimators instead. As an example,
Seco’s IC (Seco et all, 2004) is calculated by using the descendants of a given

conceptc € C:

log( 4=l log(|desc(c)|)
ICseco(C) = W =1- W, (1.3)

where desc(c) is a set containing c and all of its descendants and C is the set
of concepts of an ontology. This function is bounded on an interval [0;1]; it
behaves like extrinsic ICs: the more specific the concept, the higher the IC
value. The other ICs used in our work (Sanchez and Batef, 2o11; Zhou et all,

2008; Harispe etal, po1i5a)all satisfy these properties while providing some
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other specificities. Forinstance, Zhou etal. (2008) propose to consider both
the depth of a concept and the number of its descendants to assess its IC.
Now that the information concepts convey has been defined, let us explain

how it is used in IC-based SSMs.

1.3.2.4. IC-based semantic similarity measures

The idea behind IC-based SSMs is to model the similarity of two concepts
by relying on the amount of information they carry and their similarity
according to the KR. For example, let us take two pairs of concepts that
are equally distant in terms of path in the graph (see Figure L.4). The pair
of less specific concepts (e.g., {BIRD, MONKEY}), i.e. with a low value of IC,
should have a lower similarity value the pair of more specific concepts (e.g.,
[cRAPEFRUIT, PERSIAN LIME}). This rule refines the definition of shortest
path similarity measures solely based on the taxonomy. Here, the short-
est path is coupled with the specificity of the pair of compared concepts so
that the similarity of {MoNKEY, BIRD}is different from that of {GRAPEFRuUIT,

PERSIAN LIME].

Resnik (Resnik, 1995) is the first to implicitly define the MICA notion that
stands for Most Informative Common Ancestor. The MICA is a way to repre-
sent the shortest path of two concepts in a DAC. By maximizing an (extrin-
sic) IC function, he proposed to compute the similarity of a pair of concepts

by calculating the IC of the MICA:

SiMpesnix(C, ¢') = IC(MICA(c, '), (1.4)

where ¢, ¢’ are two concepts. The drawback of such calculation is that some
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Figure1.4.: Identical path distance of two pairs of concepts should lead to
different values of similarity that take into account the speci-
ficity of the pair of concepts.

pairs of concepts would have the same similarity whereas they should not.
By assuming the partial order provided by the taxonomic relationship is_a
of an ontology, let us assume ¢’ < ¢, where the concept ¢’ is a subclass of
the concept ¢ according to the definition of the hierarchy #.. In Figure
1.4, MAMMAL = ANIMAL, MONKEY < MAMMAL, BIRD = ANIMAL. In this case,
SiMpesnik(MONKEY, BIRD) = SiMgesnix(MAMMAL, BIRD), while we expect that

sim(MAMMAL, BIRD) > Sim(MONKEY, BIRD).

In order to tackle thisissue, many authors like Linj (1998) proposed enhanced
functions. Lin’s SSM, the most used SSM in this thesis, is defined as fol-

lows.

2 x IC(MICA(c,d))
1C(c) +1¢(c') (1.5)

simyn(c, ) =

As a result, the similarity depends on the IC of the MICA and the individ-
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ual ICs of the compared concepts. The Lin measure is extensively used in
our work because it is said to be a neutral measure as compared to some
other proposals that meet different requirements that we do not cover in
this thesis. For example, the Lin measure respects the property of iden-
tity of the indiscernibles that consists in assuming that if the compared
concepts have exactly the same properties, then they are identical and the
similarity should thus be maximal. That is to say, for two concepts c,c/,
simyip(c,c) = simyy(c/,c’) = 1—except for the root because its IC is 0. In
some case, one may prefer the non-respect of this property, leading to the
choice of aless neutral SSM as in (Schlickeretall, 2006). Note that we study
the impact of the choice of several SSMs by relying on an abstract frame-

work that can instantiate many of them in §p.6.3.

So far, we described the pairwise semantic similarity measures but we of-
ten have to compare two groups of concepts. Two strategies have been fol-
lowed, called direct and indirect groupwise semantic measures. The for-
mer consider the sets of features of both sets of concepts while the latter
aggregate individual pairwise values. The Jaccard index for example may
be applied to create a direct groupwise SSM (Centleman, 2010). Let us de-
fine the set anc(c) that corresponds to ¢ and all of its ancestors. Say A, B
are two groups of concepts and A* = J.,anc(c),Bt = [J.;anc(c). The

semantic similarity of A and B can be computed by

. AT NBT
Slm]accard(Aa B) - W (16)

Despite the fact that some other works propose direct groupwise semantic

similarity measures (Pesquita et all, 20o7; Mistry and Pavlidis, 20o8), they
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are all hampered by a higher computation time than for indirect ones. In-
deed, for any application, the whole list of pairwise similarities can be pre-
computed and stored for a given ontology. Then, accessing these similari-
tiesisin constant time and only the aggregation has to be computed. Addi-
tonally, indirect approaches may offer possibilities for optimizations. For
example, sim({c,, cv}, {Cc, ca}) must not be very different from sim({c,, ¢» },
{cc}) if this similarity is based on an arithmetic mean of pairwise values.
This means that when we need to compute many groupwise semantic sim-
ilarities, we may not have to recompute the whole aggregation but derive
it from another already computed similarity, therefore, our choice was to
go with indirect SSMs. Apart from classical aggregators (minimum, maxi-
mum, arithmetic mean, geometricmean...), a few more refined ones have
been proposed (Schlicker et all, 200G; Pesquita etal., 2007). The Best Match
Average (Schlicker et alJ, 2006) is a composite average between two sets of
concepts, here A, B, which we mainly decided to employ throughout this

thesis:

. 1 . 1 .
simpma(A,B) = 28] Z simm(c,A) + A Z simm(c, B), (1.7)

ceB cEA

where simy, (¢, B) = maxcep(sim(c,c’)) and sim(c, ) is any IC-based pair-
wise SSM such as those detailed previously. It is thus the average of all
maximum similarities of concepts in A regarding B and vice versa. Its defi-
nition is further detailed in §2:4.3.3 along with the several computational

optimizations it allows.
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1.4. Objectives and context of the thesis

So far, this chapter detailed the importance and utility of indexing and
clustering for information retrieval along with the possibilities oftfered by
KRs, particularly the computation of SSs. Nowadays, IR is not limited to
Google and its concurrents. NCBI, for example, proposes a federated IRS
called Entrez (Sayers et al/, 2011) to look for proteins, genes, species or sci-
entific papers. In other words, it relies on several specific—gene-specific,
protein-specific, etc.—IRS to retrieve information out of more than 3o data-
bases. This shows that depending on the type of documents we are looking
for, we use a different IRS that may rely on different paradigms. The main
difference liesin the features that are considered to match a query with the
corpus. For text-based IR, documents are annotated with keywords, where
the query contains words; forimage retrieval, the features are based on pat-
terns of pixels, where the query may be a picture; etc. The emergence of
such federated systems shows that there is a need for more generic systems
that are able to answer an information need from many sources. The same
need for more flexible approaches can be identified in the clustering field
as well, as showed by some studies like Chebel et al. (2015), which try to

cluster multilingual documents.

The main goal of this thesis is to contribute to the field of knowledge-based
systems, especially for indexing and clustering, by promoting the use of
KRs. Although KRs are very well used in several fields, we think they are
not fully exploited. For example in semantic indexing, people usually use
only the concepts for annotating. That is, the methods barely use the tax-

onomy or other relationships of the ontology and prefer to focus on map-
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ping, for example, texts to a set of concepts by using their labels. Despite
the very good results obtained with these approaches, we felt something

was missing.

As indexing and clustering are key processes for many applications such
as IR, we decided to explore the possibilities in these domains. They are

two-fold:

« relying on knowledge representations through the use of semantic

similarity measures might lead to better predictions or decisions,

« using semantic annotations may allow to build generic approaches

instead of creating federated systems.

A whole field of Al is dedicated to the assessment of the similarity of pairs
or groups of concepts by relying on the structure of the underlying ontol-
ogy. These measures are used in various domains, e.g. IR (Lin and Wilbui,
2007) for the computation of the relevance score. The second item is mo-
tivated by the fact that relying on semantic annotations should enable to
create multi-domain approaches. We noted that many methods in differ-
ent fields do the same thing, applied to a slightly different kind of data.
They use the same machine learning algorithms, on nearly the same fea-

tures, to the same aim.

In light of the literature, we wonder what impact the use of semantic simi-
larity measures has regarding indexing and clustering. In order to answer,
this thesis provides an extended study of the implementation of SSMs
in these processes. It deeply covers the algorithmic aspect of building sys-
tems solely upon SSMs and details an analysis of robustness of a semantic

similarity-based technique towards numerous SSMs. Most of all, the rele-
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vance of an SSM-based indexing system is tested through an international

large-scale indexing challenge.

Our application of this paradigm to the clustering area rose another ques-
tion: how to label the clusters? More generically, is there a difference
between annotating a single document and annotating a group of docu-
ments? If so, to what extent? We propose to deal with this question by
adapting our indexing technique and suggest a semantic summarization
algorithm that aims at factorizing a group of concepts into a meaningful
summary. This approach has been designed and tested in the context of

cluster labeling.

Finally we want to study the role of the user in these two processes. In the
literature, users are requested in the last step of both indexing and cluster-
ing. Therefore we conduct a study on the consequences of (not) relying
on the user by creating fully or semi-automatic approaches and compar-

ing them.

This thesis is an attempt at the creation of generic indexing and clus-
tering approaches, in tune with one of the goals of the Semantic Web:
“The Semantic Web provides a common framework that allows data to be shared and

reused across application, enterprise, and community boundaries™8.

1.5. Chapter outlines

This thesis focuses on two areas of research, namely indexing and cluster-

ing. Both of them are investigated within a semantic context: more specif-

4http:// Www.w3.01g/2001/sW/
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ically, by relying on semantic annotations available for the documents and
by using semantic similarity measures. This chapter has broadly intro-
duced these areas and defined the vocabulary, the mathematical objects

and other definitions that will be useful throughout the thesis.

A detailed overview of existing approaches in this chapter would have been
confusing due to the richness of each explored area. Asaresult, each chap-
ter starts with a thorough review of the previous works, their upsides and

their limitations.

Chapter 2 is dedicated to the semantic indexing field. We present the com-
prehensive work behind USI (User-oriented Semantic Indexer). Thisincludes
the definition of objectives, the modeling of these objectives and their im-
plementation by using an optimized heuristic. We also explain the limits
of this approach, particularly the fact of relying on a user, and we propose
several options to tackle them. We conclude by presenting several real-life
applications, one of which is our participation to BioASQ 2015, a large-scale

semantic indexing challenge.

Chapter 3 is an extension of the work in Chapter 2. We follow the same
idea of proposing a generic approach for a common task—here, clustering
and cluster labeling—on the basis of semantically annotated documents.
While Chapter 2 shows several direct applications of our approach, this
chapter explores how deeper adaptations can allow to create novel approa-
ches in close fields. To do so, we build a clustering tool for generating a
benchmark for the evaluation of hierarchical clustering of semantically an-
notated documents. We then evaluate our results by using this benchmark.
We also expose a more general thought on potential uses of hierarchical

clustering and labeling as we propose it.
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The conclusion chapter ends this thesis by summarizing our contributions
in indexing and clustering. More specifically, it provides more insight
on the impact and utility of the use of semantic similarity measures in
those contexts. It also suggests novel conclusions regarding the creation,
feasability and relevance of generic systems. After detailing the general
limits of our work, the chapter gives some research perspectives in the do-
main of semantic applications, particularly those relying on semantic sim-

ilarities.
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2.1. Abstract

This chapter focuses on the association of documents with semantic anno-
tations which describe them. While the literature proposes ad hoc tech-
niques that are highly dependent of the application context, we build a
generic method that is applicable to any semantic domain. To do so, we

explore the sole use of semantic similarities through our tool, USI.

CONTRIBUTIONS RELATED TO THIS CHAPTER

Fiorini, N., Ranwez, S., Harispe, S., Montmain, J., & Ranwez, V. (2015). USI at BioASQ
2015: a Semantic Similarity-Based Approach for Semantic Indexing. In Working Notes for

the Conference and Labs of the Evaluation Forum (CLEF), Toulouse, France.

Fiorini, N., Ranwez, S., Montmain, J., & Ranwez, V. (2015). USI: a fast and accurate

approach for conceptual document annotation. BMC bioinformatics, 16(1), 83.

Fiorini, N., Ranwez, S., Montmain, J., & Ranwez, V. (2014). Coping with Imprecision
During a Semi-automatic Conceptual Indexing Process. In Information Processing and

Management of Uncertainty in Knowledge-Based Systems (pp. 11-20). Springer.

Fiorini, N., Ranwez, S., Ranwez, V., & Montmain, J. (2014). Indexation conceptuelle par
propagation. Application a un corpus d’articles scientifiques liés au cancer. In CORIA

2014, COnférence en Recherche d’Information et Applications (p. 187), France.
A generic semantic indexer, USI: http://usi.nicolasfiorini.info

A user-oriented biomedical semantic indexer: http://bio.usi.nicolasfiorini.info

A user-oriented movie semantic indexer: http://movies.usi.nicolasfiorini.info
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2.2. Related work

In Chapter 1, we discussed the growing need for semantic annotations on
which rely many tasks such as conceptual information retrieval or recom-
mendation. Semantic indexing consists of associating concepts from a
knowledge base to documents, thus describing their contents. To face the
overwhelming amount of documents to be annotated with concepts of ever
growing ontologies, automated solutions are required. For example, Pub-
Med has been gathering more than 1,000,000 new papers per year since
2011%, while the MeSH® size is growing yearly, reaching more than 27,400
descriptors (or concepts) in 2015. Manually establishing a list of concepts
correctly characterizing a document has always been challenging because
of the expertise required both in the domain of concern and the afferent on-
tology used to annotateit, but the number of documents and the size of the
ontology now make this process almost impossible. In order to automate
the process, many researchers investigated the methods that can suggest
annotations for a document. Those methods rely on document features
that are mostly related to the type of the documents. Some works were
proposed for annotating images (Carson et alJ, 1999; Zhang et all, 2014)),
texts (Jimeno Yepes et all, 2o12), audio documents (Turnbull and Barring-
ton, 20o8) or videos (Iseng et all, 20o8). These studies show how useful
conceptual annotations are for efficient data-driven applications. They all
proceed with the same general steps: (i) analyzing the content of the doc-
ument (through text-mining, sound analysis, sequencing etc.), (ii) map-
ping extracted information to an ontology and (iii) defining among the list

of potential concepts those that are the most relevant.

'http://www.michaeleisen.org/blog//p=1654
?Medical Subject Headings, the thesaurus used to annotate the papers on MEDLINE
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2.2.1. EXTRACTING CONCEPTS FROM DOCUMENTS

Conceptual approaches have proven efficient in several domains, particu-
larly in the biomedical field where conceptual indexing is used for informa-
tion retrieval (e.g. to find scientific publications by avoiding ambiguous
terms, to identify protein-protein interactions by comparing gene annota-
tions, etc.). This is why in this domain we observe many ontologies that
have been designed over the last decades (Cene Ontology, Medical Subject
Headings, SNOMED (T, etc.) to annotate a wide range of documents: sci-
entific papers, genes, proteins ... However, using ontologies to automati-
cally annotate documents is a difficult task in terms of computing power,
sometimes seen as a fuzzy multi-label categorization problem (Névéol and
Shooshan, 2009). The challenge lies in the fact that selecting the optimal
set of concepts (of unknown size) from an ontology to annotate a document
is, for non trivial criteria, an NP-complete problem that thus requires an

exponential computation time to find an exact solution.

The emergence of a lot of dedicated semantic annotation methods is then
not surprising. MetaMap (Aronsomn, 2oo1) is one example, for which the
basic idea is to filter textual contents and map them to concepts of an on-
tology. Obviously, a mapping based on a perfect textual match with the
labels associated to the concepts would not be sufficient because of the pol-
ysemy and synonymy in the language. Aronson (2001) explains that ambi-
guity is the main problem that MetaMap faces. MaxMatcher (Zhou et all,
2006D) tackles this problem by including a disambiguation algorithm based
on the words that surround the extracted textual content in the text. Jon-

quet et al| (2009) proposed the NCBO# annotator Web service that can be

3National Center for Biomedical Ontology

36



2.2 % Related work

used to annotate texts with concepts from the UMLS% and NCBO BioPortal
ontologies. The underlying method uses the structure of ontologies it re-
lies on to improve the conceptual annotations of a text. Neves and Leser
(2014) provide a comprehensive survey of concept extraction for biomedical
text documents, including the specificity of each method. Among them,

Machine Learning methods are particularly prominent.

2.2.2. THE RISE OF MACHINE LEARNING AND ITS LIMITS

In this semantic indexing context, Machine Learning (ML) is famous for
being able to provide good solutions quickly thanks to the definition of
features and the learning—mostly supervised, in this field— of their be-
haviour on a learning set. Some ML approaches have been applied to the

problem of annotating biomedical papers with the MeSH.

2.2.2.1. Description of ML approaches

The aim, when using ML to index documents, is to find relevant features
to accurately predict concepts representing a given document content. Sev-
eral ML approaches have been experimented such as gradient boosting (Del-
becque and Zweigenbaum, 201d) or Reflective Random Indexing (RRI) (Vai
sukiand Cohen, 2010). The choice of the considered features is crucial and

constitutes a key difference in those approaches (see §2.2.2.3).

Delbecque and Zweigenbaum (2010) highlight that co-authoring and cita-

tions contribute to some of the top features of their approach. This work

4Unified Medical Language System
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shows that scientific paper annotations can benefit from co-authoring and
citation information. Some of those features are FreqDistConcept and RefFreq.
The former stands for the number of occurrences of a MeSH conceptin cited
papers divided by the number of distinct concepts annotating them. The
latter represents the proportion of cited papers in this document annotated
by this concept. Another feature, MeanFreq is the average frequency of a

given concept annotating previous publications of co-authors.

The approach presented in Vasuki and Cohen (2010) is a k-NN (k-Nearest
Neighbors) approach like most hybrid approaches presented in the next
section. They suggest to use an alternative to the Latent Semantic Anal-
ysis (LSA) method called Random Indexing (RI). Let us first explain how
LSA models work in general before exploring their limits and how RI can
overcome them. LSA—or LSI, for Latent Semantic Indexing in the context
of Information Retrieval—consists of starting from a sparse matrix F where
rows w; represent words and columns ¢; represent their context, e.g. docu-
ments or phrases where those words appear (Figure p.1). Each cell F;; thus
contains the frequency of occurrence of w; in the context ¢;. As a result,
F contains a vector of occurrences for each term of the corpus and for each
document (in a document-based co-occurrence matrix). This allows to com-
pute the similarity of terms-documents by relying on well-known mathe-
matical operations based on vectors such as the cosine similarity. Because
the matrix quickly becomes unusable as the corpus size increases, LSA re-
lies on the Singular Value Decomposition (SVD) approach to factorize Fand
to benefit from a smaller matrix size. The main problems of the factoriza-
tion is that it is costly in terms of computation time and it has to be done

each time a new entry is added to the corpus.

38



2.2 % Related work
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Figure 2.1.: Overview of the Latent Semantic Indexing (LSI). A sparse ma-
trix of terms x contexts is created, each cell containing the
number of occurrences of the corresponding word in the cor-
responding context. It is then factorized by the singular value
decomposition (SVD). This allows for a reduction in size of the
matrix before computing the term-term, context-context or
term-context similarities in a vector space.
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The Random Indexing technique described by Sahlgren (2005) consists of as-
sociating a random vector of dimension d with each context (co-occurring
word or document) that contains a few +1 and —1 randomly distributed
among many 0. Each vector thus characterizes a context and these vectors
are summed up for each word, that is for each row of F. Consequently, a
matrix F' is created, where each word is represented by a context vector of
dimension d. The motivation of RI is to get a nearly orthogonal matrix of
F, as Hecht-Nielsen (1994) demonstrated that in a high-dimensional space,
there are many more orthogonal directions than truely orthogonal ones.
By choosing random directions in the high-dimensional space, one can
thus approximate orthogonality. The dimensionality of the stored data is
thus controled and adding new documents to the corpus only requires to
create a new random vector, sum it to the contexts of words occurring in
it that already exist in F' and add the new words to F'. This approach bene-
fits from a good scalability while erasing the issues of LSA. Finally, Cohen
et al) (2010) explain that RI fails to derive semantic connections between
words when they do not directly co-occur. For example, if “tumor” and
“carcinoma” do not directly co-occur, RI would not correctly assess their
similarity. Vasuki and Cohen (2010) propose to use a method called RRI,
an iterative version of RI that can learn implicit associations even when the
terms do not directly co-occur. The first step is the same asinRI, i.e. creat-
ing random document vectors. Then, each term is associated with a term
vector that is the sum of all document vectors of documents it occurs in.
RRI uses the term vector to recalculate the document vectors and the term
vectors iteratively. The cosine similarity then allows to compute the sim-
ilarity of documents. Neighboring documents and their associated MeSH

terms are retrieved. Finally, the concepts are ranked according to a score

40



2.2 % Related work

that is the sum of similarity between the documents to which they are as-

sociated with the target document (represented by its abstract).

These approaches rely mostly on ML solutions to index documents. Some
authors propose to combine concept extraction with ML to provide enhanced

annotations.

2.2.2.2. Towards hybrid methods

Concept extraction per se is an interesting idea that can actually be coupled
with other acknowledged approches to annotate documents. The Medical
Text Indexer (MTI) (Aronson et all, 2oog) for example is built upon a two-
fold strategy to fulfill this task. During a phase A, it identifies candidate
concepts while in phase B those concepts are associated with a relevance
score and ordered accordingly. This approach is similar with every hybrid

approach, although the method used for each phase may vary.

The phase A of MTI is actually made of a concept extraction tool presented
in §p.2.1: MetaMap. The title and abstract of the paper to be annotated are
given as input to MetaMap to extract UMLS concepts. UMLS being broader
than the MeSH, an algorithm, Restrict-to-MeSHE, is applied to convert this
list into MeSH headings.

MTI enriches the set of identified concepts by using a k-Nearest Neighbors
approach. Indeed we can make an intuitive assumption that documents
thatare similar in content in the corpus are likely to be annotated the same
way. Therefore, when annotating a new document, it seems legitimate

to look for similar documents that are already annotated and use those

shttp://ii.nlm.nih.gov/MTI/Details/RTM. shtml
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annotations to enrich the set of candidate concepts. PMRA (PubMed Re-
lated Articles) (Lin and Wilbut, 2007) is an algorithm designed to recom-
mend papers to readers of PubMed. This solution is used by MTI to iden-
tify the k-NNs of the considered documents. When someone reads a paper
on PubMed, PMRA proposes a list of similar papers based on a similarity
calculus between articles. This algorithm relies on two metrics. Thereisa
text similarity based on the textual content of papers—for example, the use
of words or keywords—and a semantic similarity of their respective MeSH
annotations. Since the target document provided as input in MTI is not
annotated yet, only the first calculus (text similarity) can be used during
k-NN identification and PMRA has been modified in this way. We further
refer to this modified version of PMRA as PMRA*. Several methods propose
different algorithms for the phase B but still use the PMRA* algorithm to

identify the k-NNs (Huang et all, 2o11; Mao and Lu, 2o13; Mao et all, 2014).

The goal of phase B is to filter the candidate concepts and to propose only
the relevant ones. To do so, MTI uses several outputs from phase A. For ex-
ample, each concept extracted from the text with MetaMap is given with a
confidence score according to the quality of the word-concept term match
and the possibility of ambiguity. Also, when PMRA* returns similar doc-
uments, they are associated with a neighboring score. Those scores are
used to assess the relevance of each concept. The results are then ordered,
a cut-off is applied and the list is output. ML has been extensively used to

provide the results of phase B.

Researchers compared several indexing frameworks such as k-NN, concept
extraction and vector space models. Yang (1999) and [ITieschnigg et al.

(2009) came up to the conclusion that k-NN approaches are the only scal-
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able methods that give good results. The k-NN discussed in those papers
is very simple: each neighbor acts like a voter for each concept it is an-
notated by and the algorithm counts how many times the concepts have
been voted up. Concepts are then ranked according to those votes. MTI
has been compared to such a k-NN approach in [tieschnigg et al] (2009)
and showed less good results than such a simple method. However, more
recent work on hybrid systems—that is, relying on concept extraction be-
sides the k-NN part—gave better scores (Huang et al., 2o11). This new sys-
tem provides both efficiency and effectiveness. It relies on MetaMap and
PMRA* for phase A, and it uses a LTR (Learning-To-Rank) algorithm (Cao
etall, 2007) to rank the concepts. In this implementation of LTR, the fea-

tures used to determine the score of each concept are:
« concept frequency in k-NNs, like in [Itieschnigg et al (2009);

« word unigram/bigram overlap between a concept label and the title (

and abstract) of the paper;

« query likelihood scores between MeSH terms and words in the title or

abstract by using information retrieval models;

« translation probability between two languages (author language ver-

sus expert language).

This approach only ranks the concepts, a cut-off must be applied to provide
a result to the user. They proposed a list of 25 concepts. Their approach is
more elaborated than a simple k-NN frequency-based one, thus leading to

better annotations.

Later on, the NLM team behind the work in Huang et al] (2011) improved

their system for participating at the BioASQ 2013 and BioASQ 2014 chal-

43



CHAPTER 2 ** Semantic indexing

lenges. In 2013, they updated the LTR algorithm, they implemented dy-
namic cut-offs for the number of documents toretrieve with PMRA™ and for
the number of concepts to suggest (Mao and Lu, 2013). They also considered
the baseline called MTIFL provided for the challenge. This baseline is the
draft output of MTI before human experts modify it by adding/removing
MeSH terms. In 2014, they updated the LTR algorithm again, improved the
dynamic threshold of the number of concepts to return and added a new
feature based on the results of a binary classifier (Mao et alJ, 2014). Some
participantsin the challenge built slightly similar methods (Liuetall, 2014),
while other proposed multi-label classification approaches (Papanikolaou

etall, o14).

2.2.2.3. Limits of ML approaches and general drawbacks

Although hybrid approaches showed more promising annotations, they
suffer from several limits. [imeno-Yepes et al/ (2012) note that ML meth-
ods behave differently depending on the problem and the dataset. For ex-
ample, annotating a paper with the MeSH and the Cene Ontology would
require to use different ML approaches, with different learning sets. They
hence suggest to use meta-learning, thatis the system learns to choose the

ML approach depending on the input data.

This improvement seems to overcome the specificity problem, but at the
cost of a high expertise needed to implement such a system and an exten-
sive learning phase. This learning phase is also a limiting requirement re-
gardless of the ML algorithm. Authors of tools including a learning phase
report to train it on huge amounts of training data compared to the num-

ber of test documents. [imeno-Yepes et al| (2012) mention a learning set
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of 200,000 documents for 100,000 tests. Vasuki and Cohen (2010) report
a training on more than 9,000,000 documents for a test set of 200 papers.
Névéol and Shooshan (2009) used 100,000 articles to train the system for
100,000 tests. Every time, the size of the training set seems important
compared to that of the test sets (it is at least the same, sometimes much
higher). Besides, when the number of parameters modelled by the sys-
tem is high, it is prone to overfitting (i.e. the system models very specific
features of the training set). This effect is even more important after an
extended training phase, so performance on bigger test sets should be eval-

uated as well as the predisposition of these systems to overfitting.

The main limit of all approaches presented in this thesis is their lack of
genericity. As a result, this whole section is focused on the indexing of
biomedical papers, while semantic annotations are not limited to this field.
More generally, almost all described approaches are text-specific whereas
this task is useful to annotate many kinds of documents. So far, there has
been no work on a generic approach for annotating documents irrespective

of their type.

2.2.3. EVALUATION DATASETS AND METRICS

The evaluation of indexing methods consists of comparing their results
with gold standard ones. These gold standards are made by experts in the
field, in general by the same team thatactually annotates documents every
day at the NLM library. The aim is to assess how close the proposed anno-
tation of each paper is from the gold standard, and by extension, evaluate

the results on a whole dataset.

45



CHAPTER 2 ** Semantic indexing

2.2.3.1. Benchmarks

Although several methods were proposed for concept extraction or docu-
ment annotation, there has been a lack of proper benchmarks before the
first BioASQ challenge in 2013. Usually, in order to evaluate their system,
researchers created a gold standard dataset extracted from PubMed and
compared their results with the gold standard. Several small datasets have
been created and shared such as NLM2oo7 (Aronson et al., 2004) or L1ooo
(Huang et all, 2o11). However, some authors evaluated their results on
datasets that are not accessible anymore as in [[Tieschnigg et al| (2009). Fi-
nally, there are even studies that do not share any dataset (Jimeno-Yepes
etall, po12), making the comparison to their approach impossible. Indeed,
the source code of annotation tools is rarely available so it is impossible
to test the efficiency of older approaches on new benchmarks. Note that
this is quite contradictory with the initial aim of such work: building new
methods in order to help the indexing community and make proper ad-
vances in this domain. Since we encountered these problem, we decided
to make all our work available online (softwares, results, datasets, etc.). In
order to evaluate a new system, one should thus choose between using a
very small benchmark (200 tests for NLM2007, 1,000 tests for L1ooo) or make
a new dataset knowing that the results would not be comparable with pre-

vious work.

BioASQ bridges the gap by bringing proper evaluation sets (with a correct
size) and by allowing teams to submit results obtained with several vari-
ants of their tools during several months and compare their results. Af-
ter the BioASQ 2014 edition, Mao et al|| (2014) made available a 5,000 tests

dataset from BioASQ named BioASQso000 and the result of their method
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MeSH Now, winner of the 2014 challenge. Therefore, it is now easy to com-
pare a new method to state-of-the-art ones by using this dataset and MeSH

Now results.

2.2.3.2. Metrics

Several classical measures have been proposed in the literature for evalu-
ating results of automatic annotation against a gold standard. Precision,
recall and F-measure are the most common ones as in Huang et al (2011).
Say the annotation G C P(C) is the expected result, which is the gold stan-
dard for a document, and O C P(C) the observed result. Precision P is the
fraction of the set of proposed concepts that is present in the gold standard,

P is maximal when the observed annotations are all in the gold standard:

GNoO
,_leno
0]

(2.1)

and recall Ris the fraction of the gold standard recovered by the method, R
is maximal when all annotations in the gold standard are in the observed

annotations:
_|GNnO|
[«

R

(2.2)

The F-measure F is the harmonic mean of precision and recall thus provid-

ing a global assessment of the result, thatis

F_Z*P*R
~ P+R

(2.3)

Since the outputs of automatic indexing used to be proposed as a ranked

list, authors also used the MAP (Mean Average Precision) to emphasize the
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importance of the order (Irieschnigg etall, 2oog; Huang et all, 2o11). This
measure relies on the computation of an average precision (AP) for each

document d of the test set. AP is defined as follows:

n

1
APy = a ; (P * 1(t)), (2.4)
GNoO
p,— 16710 (2.5)

where t € N is a position in the results of size n, P, is the precision at this
specific position, Oy is the set of terms cut after the position t. I(t) is an
indicator function for which value is 1if the term at position t is relevant,
that is it belongs to G, 0 otherwise. AP is thus computed for a finite list
of annotations, which means that a cut-off is applied. The MAP is then

computed for the whole test set D with

1
MAP = > APy (2.6)

Although those measures represent the metric that were mostly used for
evaluating automaticannotation, some papers used several variations. [Gay
etal (2oog), for example, use the F-measure as presented above as well as
the F,-measure that puts more weight on recall. In fact, a general expres-

sion of the F-measure exists:

_ (B+1PxR
- PP+R

(2.7)

where B = 2 in the case of the F,-measure and B = 1 for the classical F-

measure.
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When annotating documents with concepts that come from a structured
knowledge representation, precision, recall, MAP and F-measure may seem
unadapted. In fact, those measures do not take into account the underly-
ing structure of the concepts. For example, say a paper is automatically
annotated maMMAL while the expected concept was poc. This annotation
is not perfect, but we know with the MeSH that a dog is a mammal. There-
fore, giving a precision of 0 for this annotation seems inappropriate as it
does not capture the fact that MaMMAL is a much better choice than the
completely out of scope concept BicycLE forinstance. Asaresult, itis pretty
hard to compare the results of different approaches that are evaluated ac-
cording to these metrics as they do not reflect well their quality in this spe-
cific semantic context. Some authors thus investigated better fitted met-
rics as in Névéol etal | (2006). They conclude that semantic similarities give
better scores than precision and recall because they consider the structure.
They advise to use them when evaluating automatic semantic annotations.
However, to the best of our knowledge, no paper followed up with this idea

until the BioASQ challenge.

The BioASQ challenge proposes two evaluation metrics. They call them flat
and hierarchical. The flat measure is a simple F-measure, while the hier-
archical one called LCA-F follows the concepts presented in Kosmopoulos
et al) (2o13). It is a sort of F-measure that takes into account the hierar-
chy of concepts by considering their ancestors. The idea is the same as in
Néveol et al) (2006), that is, using the relations among concepts to provide

a better assessed score.
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2.3. Motivation & positioning

There are several points that we question when semantically annotating
documents. The methods in the literature propose to output an ordered
list of concepts for a target document. We wonder whether order matters
and, more generally, if ordering is the right way to propose an annotation.
Basically, scoring each concept individually may lead to some biases in the

annotations (see §.4.2.1).

Studies state huge amounts of training data that is needed to get their re-
spective results. There is also the risk of overfitting when numerous pa-
rameters are extensively trained. Apart from those downsides, every tool
proposed in the literature is type-specific, e.g. it only applies on biomedi-
cal documents. Some may be extended to more general textual documents,
but thereis nowork dealing with any type of document. Evenin text-based
application, Huang et al (2011) report that full texts are not always avail-

able, making the annotation task more difficult.

Finally, to the best of our knowledge, there is no study reporting anything
about algorithm complexity or running times for this task except some
scalability tests in [ITieschnigg et al. (2009). Considering the increasing

number of documents to be annotated, those parameters become crucial.

2.4. USI: a generic User-oriented Semantic Indexer

The following sections describe the steps and choices we made to create a k-

NN-based annotation framework and its implementation in an optimized
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L% — e —

Identification of Finding most
the neighbors relevant concepts

Figure 2.2.: The two main processing phases of USI. First the neighboring
documents are found by using an information retrieval sys-
tem. Second, annotations of the neighbors are processed to
find the most relevant concepts among them.

algorithm. In order to keep the description of this work consistent, we rely
on an example that will be this chapter’s main theme: the annotation of

biomedical papers with MeSH descriptors.

k-NN approaches are motivated by the assumption that documents close in
content should be close in their annotations. Their implementation thus
consists of identifying, thanks to approaches based on Natural Language
Processing (NLP) for example, a neighborhood of close documents and use
those neighbors to annotate the current document. Figure p.3 depicts the

pipeline USI follows for annotating documents.

2.4.1. SELECTION OF NEIGHBORING DOCUMENTS

Identifying close neighbors of the document to be annotated can be seen
as an information retrieval task, since the aim is to find documents in a
collection that match with a query. Here, the query would be the content
of the document to annotate—or its keywords, or any representation of its

content. This process relies on the content of the document, so it is type-
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specific: IRSs based on text work differently from the ones based on audio
documents. We further discuss the genericity of neighbor documents se-
lection in section p.5.1 where the role of the user is emphasized. This step
can be assimilated to an IR task and many tools already exist to do this
job. Although it is absolutely needed in k-NN approaches, it is quite inde-
pendent from the proper annotation process. Therefore, we had to make
a choice on the system to use to get documents similar in content. For
our biomedical paper annotation example, we chose a state-of-the-art ap-

proach, PMRA®, the textual variant of PMRA described in §p.2.2.3.

2.4.2. MODELING THE OBJECTIVES

Let us assume a neighborhood of documents has been identified for the
target document. This neighborhood is a set K of k documents. Each docu-

ment d € Kis annotated by a set of concepts Aq C C such as

A:K—2C
(2.8)
d— Aq.

The set of annotations of all documents of K is a family of sets denoted 2x =
{Aq4|d € K}. Once the neighbor documents are gathered, the system iden-
tifies the concepts that best summarize their annotations. Testing all sub-
sets of concepts would lead to a solution having an exponential time com-
plexity that would not be able to deal with large ontologies. We hence limit
our search space to the subset of concepts A, defined as A = | agen Ad- The
optimal solution to the indexing problem, A*, is obtained by maximizing
anobjective function f(A), thatis A* = argmax,, (f(A)). The next sections

describe the choices we made to model this objective function.
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2.4.2.1. Individual concept scoring versus annotation scoring

Classically, the concepts are individually scored according to several fea-
tures: Is this concept common in the neighborhood? Is this concept ouput
by several methods, e.g. both NLP and the neighborhood? The concepts
are then ranked according to their score(s). This approach however may
produce redundant annotations. Say a paper describes a study about carci-
noma affecting dogs. An NLP analysis would certainly extract the concepts
poG and cARCINOMA as top concepts among others. Say the documents in
the collection, therefore in the neighborhood, do not discuss the specific
case of the dog but carcinoma among mammals in general. Then, carci-
Noma would be highly rated since both NLP and k-NN exploration return it.
poc and mammaLs would follow in the list. The order would basically de-
pend on the weight given to NLP or k-NN. A dog is a mammal, so returning
the two concepts is a form of redundancy that the user would like to avoid.
This is due to the fact that each concept is scored independently of other
proposed concepts and often regardless of the ontology structure, leading

to possible annotations containing parents and their children concepts.

Set scoring may allow to overcome this redundancy. Instead of scoring
each concept, theidea is to globally evaluate a set of concepts considered as
a potential annotation of the document based on the neighborhood, con-
cept extraction, etc. Besides, it allows to assess the synergy of concepts alto-
gether. That is, for example, comparing the sets {poG, carciNomaA} with
[poG, MAMMALs] w.r.t the objective function. The way we chose to assess
the quality of a group of concepts is the semantic similarity. As described
in §L.3.2.4, many semantic measures are available. Groupwise measures

allow us to compare two sets of concepts, for instance an annotation sug-
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gested by the method with any element of 2. It thus seems that seman-
tic similarities would provide a more accurate annotation, certainly at the
cost of higher computation time. Indeed, finding an optimal set of con-
cepts is obviously more complex than individually scoring and ranking the
concepts but also closer to the intuitive idea of evaluating an annotation
suggestion. USI follows the set scoring strategy at the cost of an algorithm

complexity that will be discussed and optimized in §2.4.3.3.

2.4.2.2. The consistency criterion

Our approach only relies on the neighbor documents, so the system must
be able to score the annotation it proposes by relying solely on those neigh-
bors. We model the consistency of an annotation by its average similarity
with the neighbors annotations. The idea is that if an annotation is very
close to that of all documents in K, then itis likely to be accurate. The simi-
larity between the proposed annotation and the neighbor annotations can

be modelled by using a groupwise semantic similarity.

Let us generically denote simg4(A, B) a groupwise semantic similarity re-
turning a similarity score in [0; 1] for two sets of concepts Aand B. We want
to explore the search space A, to find the set of concepts that is the most
similar to the neighbor annotations. This is modelled by the following con-

sistency objective

consistency(A) = i Z (simg(A, Ad)). (2.9)

Ag€ex

We do not fully discuss the choice of the measure in this section (see §2.6.2).
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Note, however, that depending on the properties of the function chosen to
assess the similarity, the output may suffer from several downsides. For

example, let us analyze this very naive similarity function:

simg(A,B) = max <simp(a,b)). (2.10)
bep
where simy(a, b) is a pairwise similarity function between conceptsaand b.
In that case, many optimal solutions A* exist since as soon as one concept
of A4 is present in A*, their similarity is maximal. Therefore it suffices for
A* to contain at least one concept of each A4 of the neighborhood to be an
optimal solution. Obviously, such a groupwise similarity is not satisfying
as A, or even C would be optimal solutions while being uninformative due

to a lack of accuracy and a high redundancy. This emphasizes the impor-

tance of choosing simg(+) and simy(-) carefully.

2.4.2.3. The concision constraint

The optimal annotation should be both consistent with the neighborhood
and concise. These two criteria may bring into focus the precision and re-
call metrics for evaluation in information retrieval. By returning many
concepts we have more chances of having good recall but often at the cost
of a low precision and vice versa. We define concision as a penalty on the

number of concepts in the annotation:

penalty(A) = p[A], (2.11)
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where L € [0;1]is a parameter controlling the importance of the constraint.

Let us write the full objective function f(A):

f(A) = consistency(A) — penalty.(A) (2.12)
f(A) = % 3 <simg(A, Ad)) —ulAl. (2.13)

In fact, here p represents the decrease of the average similarity that the
user accepts for removing a concept. Here is an example of two candidate
sets: A; = {DOG, CAT, RABBIT, MAMMALS} and A, = {DOG,CAT,RABBIT}. Say
A; has a consistency score of 0.82 while A, has 0.79. Say p = 0.05, the
penalty for A; is 0.2 and the penalty for A, is 0.15. The final score for each
is thus respectively 0.62 and 0.64. A, is preferred with this value of p since
the user accepts to lose up to 0.05 in the average semantic similarity for
removing one concept and improving concision. The question of the value
of p thus arises. Its value is nearly impossible to define by hand. In all
of our applications, we optimized it by fitting the expected average result
size of a test. Itisimportant to note that this is so high-level (it reflects the
desired annotation lengths) that a small test set is sufficient for this task.
Also this could be combined with a fixed upper bound of size of returned

annotations (algorithm f] implements this feature).

2.4.2.4. Discussion of other alternatives and leads

Before going further, let us briefly describe the other alternatives that we

have imagined and sometimes explored before abandoning them. Indeed,
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so far we have detailed the search space and an objective function that re-

lies on two criteria, but one can imagine different ways to calculate them.

2.4.2.4.1. An enriched search space

A, is defined as the union of concepts annotating the documents of the
neighborhood. At first, we also imagined a definition that includes their
ancestors. Given Ag = (U, co Ads this alternative search space A; would

be defined as A, = |

superclasses, or hypernyms, etc.) of c. This alternative definition would

cea, @0€(c), where anc(c) is the list of all ancestors (or
allow the system to propose annotations including more abstract concepts
and factorizing the annotation for example. However, factorizing the set
of concepts annotating the neighbors is not the purpose of indexing and an
annotation containing specific concepts is generally preferred. In the next
chapter, we further detail an application where considering the ancestors

has better odds to be relevant.

2.4.2.4.2. A specificity criterion

As we said an annotation had to be specific, one could suggest to empha-
size the specificity of the concepts to find A*. In other words, creating a
criterion that would favor specific concepts over more generic ones. In fact,
as we limit the scope of SSMs to the ones defined in the previous chapter
(see §L.3.2.3), specificity is inherently favored. Indeed, we saw that if we
consider two pairs of concepts distant by the same number of nodes in the

graph, the pair with higher indivual IC—thus specificity—is considered to
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be more similar. Besides, the choice of A, over Aj is another way to favor

specific concepts.

2.4.2.4.3. Preprocessing the neighbor annotations

When observing the documents that are already annotated in a few cor-
pora, particularly in the biomedical domain, we identified what we consid-
ered to be inconsistencies. The most common phenomenon is the presence
of parent-child concepts, for instance a document annotated by {ANIMALS,
MAMMALS, pocs}. We thus thought about preprocessing such annotations
in the neighborhood to make them less redundant and avoid noise in our
algorithm. Such annotation would be replaced by {pocs} here as it implic-
itly encompasses others. After some research we saw that human indexers
have to obey some rules in order to keep the index consistent despite the
number of human experts curating it. What we thought to be an inconsis-
tency was in fact an indexing rule for the corpus. As a result, we decided
not to put any constraint on the annotations of the neighbors because the

essence of our algorithm is to mimic a human expert annotation.

2.4.3. ALGORITHM DETAILS

The algorithm is the final important choice to make. Finding an exact solu-
tion according to the objective function is not feasible because of the expo-
nential amount of time required as there are O(2*l) possible annotations
to consider. In fact, the problem seems to be NP-complete and close to the

subset-sum problem for which a description is available in Cormen (2009),
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Chapter 35.5. We thus chose to rely on a heuristic algorithm to keep the

execution time low even if the size of the search space A, increases.

2.4.3.1. An intuitive heuristic

An intuitive heuristic that could come to mind to solve the problem of se-
lecting the best subset of concepts among A, is a hill-climbing heuristic.
Starting from an empty set, the algorithm adds concepts from A, as long
as the objective function score increases. The opposite is also possible: re-
moving concepts from A, following the same condition. Let us study the
complexity of this algorithm by proceeding step by step. In the worst case,
the optimum is A, and we added all concepts to A. Or for the opposite, the
optimum is only one concept and we had to remove all concepts but one
from A, to get to the solution. Let us define n = |A|, the algorithm up-
dates the annotation n times and, if there is each time a single concept
leading to an increase of f(A) and it is tested after all others, then f(A) is

calledn + (n —1) + ... + 1 times hence O(n?).

The choice of an agglomerative or subtractive approach actually matters
a lot. For example, let us consider the following A, ={mMammAL, DpoG ,
carcINOMA} and a trivial neighborhood of two documents annotated by
{MAMMAL, carRcINOMA} and {poG, carciNoMA}. We assume that the algo-
rithm explores A, in its original order. With a subtractive approach, A, \
{mammaL} would be evaluated and, depending on the value of i, MAMMAL
may be definitely removed from A,. The other concepts would certainly
be kept because their removal has poor chances of increasing the objec-
tive function value—again, it depends on p. Now with an agglomerative

strategy the algorithm would consist of iteratively adding concepts of A,
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to A, starting with A = {}. mammaL would be added first, then A U {poc}
would be tested. At this point, the objective function may not increase, in
which case A* = {mamMaL,carciNoMa}. This means that by choosing an
agglomerative strategy, we might pick a generic concept for an iteration
that might prevent the selection of more specific ones afterwards. How-
ever, a subtractive strategy is not exempt from reaching a local optimum
either since it is very sensitive to the order provided in A,. We have yet
not explored all the subsets of A, because of the use of a heuristic, so the

possibility of reaching a local optimum should absolutely be minimized.

2.4.3.2. Animproved heuristic

A good algorithmic alternative to the simple one-way exploration of A, is
to find the best concept to remove at each iteration (see algorithm f). This
means evaluating all possibilities at each iteration. For each concept re-
moval, all concepts of A—the current state of the set—have to be tested to
find the best one toremove, thatis: n+n—1+...+1= @ Let z be the
size of A during the process, then f(A) is called ".__z times in any cases.
The time needed to evaluate f(A) for each concept at each iteration highly
depends on the groupwise similarity that is used. Let us then study the

time complexity of such an algorithm and explore some optimizations.
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Algorithm 1: Approximate A* C A, using a set of documents K

1 Function Annotate (K, i1, th, 0)

N

® N & u & W

10
11
12
13
14
15
16
17
18
19
20
21

22

end

Input :The set of neighbors K, a real number p € [0;1], a maximal

size of annotation th € N, an ontology 0

Output : A set of concepts A

bestScore <+ —oo;

A< UAdEQlK Ag;

objectiveScore < f(A, i, 2, 0);

while objectiveScore > bestScoreor |A| > th do

bestScore < objectiveScore;
maxTemp < —oo;

maxConcept < null;

foreachc € Ado

tempScore «+ f(A\c, 1, g, 0);

if tempScore > maxTemp then
maxTemp < tempScore;
maxConcept < C

end

end

if maxTemp > bestScoreor |A| > th then
A < A\maxConcept;
objectiveScore <— maxTemp
end

end
return A
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2.4.3.3. Study of complexity and optimization

Complexity of an unoptimized algorithm

In order to accurately assess the complexity of the whole algorithm, we
must take into account the time needed to compute f(A) defined in equa-
tion p.13. It relies on the number k of selected neighbors and the computa-

tion of a groupwise semantic similarity.

In fact, we have to choose among three strategies for calculating the simi-
larity of two sets of concepts that are (i) using a simple indirect groupwise
measure, (ii) using a direct groupwise measure or (iii) using an elaborated
indirect groupwise measure. The first strategy is for example to take the av-
erage of all parwise similarities of the two sets. The problem of such strat-
egy is that it does not capture the similarity as well as direct groupwise
measures. However, as explained in the first chapter, the disadvantage of
a direct groupwise approach is its high computation time. The last option
that we decided to choose is an elaborated indirect groupwise measure. It
provides similarities that are closer to the direct groupwise measures. As
for the direct measures, its computation is heavier than a simple group-
wise measure but it allows algorithm optimizations because it uses pair-
wise similarities so that some computation can be saved when updating
the annotation. The similarity measure we thus choose in order to evalu-
ate the closeness between two groups of concepts is a composite average
of pairwise similarities called Best Match Average (BMA) (Schlicker et all,

20006) defined as follows:

SimBMA(A7 Ad) = —
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where simyp, (¢, Aq) = maxc,ea,(simy(c, cq)). This function thus requires to
compute every pairwise similarity between A and A,4. This means that for
each evaluation of f(A), all pairwise similarities of concepts from A and
2y are considered. Let us assume that each pairwise similarity simy(-) is
precomputed and accessed in constant time in this complexity expression.
Indeed, it would be counter productive to actually repeatedly compute the
same pairwise similarities. Instead, those similarities can be retrieved
from a database that stores the semantic similarities of all pair of concepts
for a given ontology. Say Sg,.,, is the maximum size of annotations in Ax
and z = |A|. In the worst case, one groupwise similarity is thus computed
in O(z8q,,,) and the computation of such similarity is done k times, once
per neighbor, according to the objective function. The computation of f()
atline 1o (cf. algorithm [) is thus done in O(kzS,,,,). Asitis done z times—
once per iteration of the for each loop—, the complexity of the inner loop

(1.9-14) is thus O(kz?S,,,,, ) and that of the overall algorithm (while loop) is:

1
O(Z kzzsdmax) = O(kn3sdmax) (2’15)

Optimizations

Computing BMA groupwise similarities is the most time-consuming task

as it is done repeatedly.

Let us focus on how the BMA is calculated. Equation shows that it re-
quires to find, for each concept of A4, the most similar concept in A and
vice versa. This supposes the constitution of a matrix of pairwise similari-
ties. The way A, is constructed implies that VAy € 2k, Aq C A,. Therefore,

building a matrix M,s with all n? pairwise similarities of A, is the first step
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Ao

Cp C C3 C C5 Cs C7 Cg Co

G
Gy d;
G
Ca d>
Cs
Co ds
G
Cg d4
Co

- Al - {Cla cZa CS, C7}

— Ay = {C1,C3,Ca}

Ao

— A3 = {C87C9}

— Ay = {Cz,Cs,Ce}

(T T TR I

M, matrix 4 identified nearest neighbors

Figure 2.3.: Minimal example of the structure used prior to optimization.

to finding maxima and sum them up further on. Assuming that access to
all pairwise similarities is done in constant time, initialization of My is

done in O(n?) (see Figure .3).

Now, when calculating simpya(A, Aq), We must restrict the matrix to the
submatrix Mys(A, Aq) to avoid browsing the whole M, matrix. This restric-
tion is done in O(|A| + |Aq4|) by simply identifying the indexes of the rele-
vant rows/columns without duplicating the submatrix. In the rest of this
section, My is a shorthand notation referring to Mps(A, Aq). Mps columns
are concepts of A while its rows are concepts of a given document d € K as
showed by Figure p.4. The optimization of USI lies in the fact that when a
concept ¢, is removed, the score difference of f(A\c;) can be efficiently de-
rived from the data used to estimate f(A) by updating the few intermediate

values impacted by the removal of ;.

The BMA measure relies on what we call SumMaxCols and SumMaxRows
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A
=
€, C C3 Cq Cs Cr Co d = A ={0,00,0}
=
Q d, =— A ={c,,c}
o (&) —
<< . d = — As = {cs 0}
—
< dy =|— A= {c2, s, ¢6}

My (A, A;) submatrix

Figure 2.4.: Restriction of the M, matrix to handle d; when considering
A= {Cla C27 C37 C47 C67 C77 C9}-

functions. The average of the values of those functions gives the result of
the BMA. In our case, when computing the similarity between A and the
annotation of a singledocument A4, SumMaxCols(Mps) = Y., SiMm(c, Aq)
and SumMaxRows(Mps) = > ., Simp(c,A). Let col(c;) denote the col-
umn of M, representing the concept c; € A to be removed. When ¢, is
removed, SumMaxCols result can simply be updated by substracting the
value of simy,(c;, Aq). Therefore, we can compute once and for all k lists
called MaxColy of maximum similarities for A;—one for each document,
see Figure p.§—and substract the value of the maximum similarity that
corresponds to ¢; for a given document in constant time when needed. The
computation of all the maxima is done for all concepts of Ay, for every doc-
ument in K, in O(knSy,, ) and can be updated in O(k) each time a concept
is removed from A. When a concept is removed—that is, 22 times—the
SumMaxCols values are updated so the overall management of the SumMaxCols

values isin

1
O(knSy,,, + Y _zk) = O(knSy,,, + n’K). (2.16)

Z=n
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A
€ G C3 C G Cg G Cg Co d; HA1 = {C17C2,C5,C7}
G
— CZ
< Cs Ci C C3 C4 C5 Cg G Cg Co
C; 12 3 45/ 6 7 8|9

Mps (Ao, Ar) submatrix MaxCol, list

Figure 2.5.: Restricted matrix and MaxCol, list for d;. Cellsin purple in the
restricted matrix contain the maximum similarity of each col-
umn, so for each concept of A. MaxCol, associates, for each
column, the cell value that corresponds to the maximum sim-
ilarity.

When testing a concept removal (1.10), SumMaxCols is stored before mod-
ification so that it can be restored in O(1). Updating the SumMaxRows
value may require some more computation. The difference is that it may
happen, when removing a concept ¢, from A, that it was precisely this con-
cept that gave the maximum value of a row and the new maximum must
be calculated. The idea behind the optimization for this part is that we
can detect when it happens. Figure p.d illustrates its implementation, de-
tailed thereafter. For each concept c € A, we store the list Inverse. of doc-
uments in which it appears. We also store for each concept ¢ € A the rows
in which they currently give the maximum value in a list denoted Corr..
As for SumMaxColumns, we compute the list MaxRowy of all maximum
values per row, that is, for each concept of Ay € 2 we find the concept
in A, that gives the maximum similarity. This, and the creation of the
Inverse. and Corr,, is done with the same complexity as SumMaxColumns,

so O(knS,,,,). After this initialization step, MaxRow, and Corr, may need
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to be updated when A is modified, while Inverse. never needs to. When a
concept is removed from A, we know which rows to update thanks to the
Corr, list. Updating the SumMaxRows is easy as it only requires to find
the new maximum for each concerned row, to calculate the difference be-
tween the old maximum value and the new one, and to add this difference
to SumMaxRows to update it. In order to find the concept to remove at
each iteration of the while loop (l.5-19), the maximum value for each of
the n rows needs to be updated exactly once—since all concepts of A are
tested once. Updating one is done in O(z) as the new maximum value
needs to be found. The SumMaxRows value for a document d € K needs
to be updated in O(1) each time a MaxRow, value of one of its concepts is
modified, i.e. at most |A4| < Sq,,,, times at each iteration of the while loop.
This happens for all neighbors and for each iteration of the while loop, so
in O(Y._ kS4,...) = O(nkSg,,,). Hence the management of SumMaxRows
during the whole algorithm consists of the initialization of SumMaxRows,
the update of MaxRowq and the update of SumMaxRows and its complexity

is respectively:

1
O (knsdmax + Z (nz) + ndemax) = O (knSg,,, +1°) . (2.17)

z=n

As for SumMaxCols, this complexity analysis only details removal of con-
cepts. Indeed, restoration of a concept c that has been removed for testing
A\c does not need computation. Indeed, USI caches all impacted values
before modifying them when testing a concept removal so the complex-
ity does not increase because of the restoration. It follows that the overall

time complexity of this algorithm is defined by the complexities to create
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Cp C C3 C4 C5 Cg G Cg Cg

M,;s matrix

Corr,, = {q}
Corr, = {c,}
Corre, = {cs3}
Corr,, = {c4}
Corr, = {cs}
Corr,, = {cs}
Corr,, = {¢;}
Corr, = {cs}
Corr, = {Co}

Corr, lists

Inverse,, = {d;,d,}
Inverse,, = {d;,ds}
Inverse., = {d,}
Inverse., = {d,}
Inverse,, = {d;, ds}
Inverse., = {da}
Inverse,, = {d;}
Inverse,, = {ds}
Inverse., = {ds}

Inverse. lists

C G C; G

1 2 5 7

MaxRow; list

Figure 2.6.: Structures for optimizing the computation of SumMaxRow
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and update M,s, SumMaxColumns and SumMaxRows, that is
O(knSq,_,, + 1), (2.18)

which is more desirable than a straightforward algorithm in O(kn’S,,,, ).
Besides, the time complexity is independent from the size of the corpus®

and that of the ontology, which guarantees the scalability of our approach.

We also studied the space complexity of this approach to make sureitis still
scalable in space. USI is built on top of the Semantic Measures Library?
(SML) (Harispe et al., po14d), which loads the entire ontology when load-
ing. Say the ontology is composed of |C| concepts. Semantic similarities
we work on rely on the hierarchical relationships (see §i.3.2.3), so the space
needed to load this ontology is in O(C?). The algorithm mainly stores three
objects: Mys in O(n?), maximum values for rows and maximum values for

columns both in O(n). Hence the overall space complexity of USIis
O’ +n+|CP) = O(IC), (2.19)

because A C C, son = |Ay| < |C]. If all pairwise semantic similarities
are precomputed and stored in a database, this space complexity becomes
O(n?). As USlis designed to be flexible and easy to use, it relies on a more
appropriate compromise and lets the user only input an ontology instead
of the list of semantic similarities. Therefore when USI has to compute a
pairwise semantic similarity, it does it once and for all by caching its result.

This is done in |C?| (if all parwise similarities have to be calculated) and it

®In fact, the size of the corpus is important for the retrieval of neighboring documents
but alot of efforts have been devoted to the creation of scalable and efficient IRS to this
end and PMRA is one of them.

7http://Www.semantic-measures-library.org/sml/
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Method F-score Semantic score  Running time (sec)
LTR 0.467 0.768 0.169
USI 0.521 0.776 0.003

Table 2.1.: Comparison of USI with LTR regarding the F-score, semantic
score and processing time.

allows USI to benefit from quick calculation of semantic similarities in the
algorithm—in fact, in real cases as fast as having all pairwise similarities

in a database.

As we wanted to have an idea of this complexity in a real use case, we mea-
sured the processing time of USI on the same dataset as for LTR (Huang
etall, po11). The authors kindly provided us with the running time of their
algorithm¥. Table g3 shows the results of the comparison between USI
as detailed above and the state-of-the-art system, in terms of F-score, se-
mantic similarity and average processing time per document in seconds.
Clearly, USI is faster than LTR (by a factor of 50) and the semantic score
(Néveol et al., 200G) and F-score of USI are significantly better than those

of LTR (p < 107°, although the semantic score is very close).

2.5. Including the user in the task

Annotating documents is an important task for upcoming processes such
as information retrieval or decision making. Introducing a bias in the an-
notation would lead to inaccurate search results. Therefore, experts are
often needed to validate the annotation. In this section, we describe when

and how experts may intervene.

8Note that the running times or LTR are obtained by using a somewhat comparable con-
figuration but on a different machine.
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2.5.1. PRIOR TO ANNOTATING

So far we have described the neighborhood selection as an automatic task,
for example by using PMRA* to retrieve similar scientific papers. However,
the constitution of the neighborhood is key in a k-NN approach. It is even
more important for USI, since it solely relies on the neighborhood for gener-
icity purposes whereas all other approaches also use features from the doc-

ument itself. We thus imagined a neighborhood definition interface.

2.5.1.1. Interactive interface

We propose that the experts manually but easily restrain the neighborhood.
Instead of automatically selecting the top k papers that PMRA™ returns as
the neighborhood for example, we take the first 100 papers it proposes. All
of those papers are already annotated, so we can compute all similarities
of pairs of documents by using the SML and one of the implemented group-
wise semantic similarity measures. In order to be consistent with the in-
dexing process that will follow, the semantic similarities used to build the
similarity matrix are the same as in USI, i.e. Lin’s pairwise measure with
Seco’s IC and Schlicker’s BMA. The matrix created is then used by the MDS]
libraryf (Pichl, 20o9) to build a 2D semantic map. MDS stands for Multi-
dimensional Scaling, an algorithm that makes a 2/3D projection of data
so that the distance reflects on the map as much similarity as possible,
i.e. semantically close items should be gathered on the projection while
semantically non similar ones should be distant on the map. The output

of this method is a set of coordinates that we use to build a map displayed

9http://www.int.uni-konstanz.de/algo/software/mdsj]
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to the user as shown on Figure p.7. Each dot represents a paper associated
with the name of its first author below it. Hovering over a paper displays

a tooltip with the full name of the paper.

We then ask the expert to point the location where the paper to be anno-
tated should be on this map. The expert should understand such a map
and be able to accurately select a position for the document. Once the user
clicked, the k closest documents on the map (using the Euclidean distance
between the click location and the document coordinates on the map) de-
fine the neighborhood that is passed to the USI algorithm to determine the

annotation of the new document.
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2.5.1.2. Impact on the results

In order to test the benefits of such an approach, we evaluated the method
by simulating clicks at the right position on the map. Indeed, evaluation

datasets provide expected annotations, so for each document we can

« define a set of 100 neighbors using PMRA®,

build the map with the document—by using its annotation—and its

100 neighbors,

« define a narrower neighborhood according to its location,

run USI with this restricted neighborhood

Results of this analysis on the Liooo dataset are displayed in table p.3. The
conclusions are two fold. First, the F-score is better when using a fully au-
tomatic method. However, as explained in §p.2.3.3, it does not take the
structure of the ontology into account and is thus useful as a relative score
to compare two methods but not as an absolute score as it strongly penal-
izes small imprecisions (e.g. annotating MaAmMMAL where the gold standard
is poc gives an F-score of 0). The table shows how the F-measure can fail in
accurately evaluating conceptual annotations. Second, scores according to
the semantic measure are much more satisfying and certainly better rep-
resent the reality of the output. We observe that the results obtained by
correctly clicking on the map are significantly better™d than those of a fully
automatic approach. This suggests that if the annotations are of great im-
portance, e.g. concerning critical fields such as medicine, then relying on

a human expert for defining the neighborhood might be a serious option.

1°significance has been tested with a paired t-test, for which p < 107.
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Method F-score Semantic score
USI automated 0.521 0.776
USI with map 0.509 0.807

Table 2.2.: Scores obtained with and without the map. The semantic score
is slightly better when relying on the map.

2.5.1.3. Limits of relying on an expert

Although thisapproach shows better annotations—according to the seman-
tic score—, it suffers from several downsides. First of all, one may wonder
how easy it is to point the location where the document should be. The
expert is supposed to be able to do it quite easily since he/she would have
arich knowledge of the published papers in the domain, but we could not

experiment on a real case to check whether or not this assumption is true.

It is certain that, whatever the time it takes for an expert to point the lo-
cation on the map, it will be slower than a fully automated approach that
outputs an annotation in a few milliseconds at most. One can thus ques-
tion the need of an expert to manually define a neighborhood. USI provides
both solutions and depending on the use case, more or less time should be
spent on the definition of the neighborhood. We think that for difficult
cases of sensitive applications it is critical to make sure the neighborhood
isaccurate, while in most cases the automatically generated one should be

fine enough.

Finally, we studied the impact of imprecision when clicking on the map.
Indeed, what if the user clicks 100px next to the correct location? sopx?
3px? In other words, it may be useful to know and inform the expert on

the sensibility of the tool when displaying the map. There are in fact two
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Figure 2.8.: Semantic score variation in different contexts. Distance
is computed according to MDS coordinates (usually in
[—0.5;0.5]).

cases for which sensibility may be different. Sometimes maps (or zones of
a map) contain documents with homogeneous annotations, while some-
times the documents are very different. For example, if a new topic has
been barely studied, it is likely that few documents only would be similar,
others would be returned anyway to reach the expected neighborhood size
but they will have highly heterogeneous annotations. Figure p.8 shows
the variation in score of the output depending on how distant the click was
from the correct location. This analysis is performed in two different con-
texts: a heterogeneous and homogeneous zone. It appears that depending
on the context, the impact of imprecision of the click highly varies. In
homogeneous zones, imprecision is well tolerated while in heterogeneous

zones it leads to bad annotations.

Since the sensibility can vary depending on the map location, it is useful
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to provide the user with information on the impact of click imprecision.
Hence, we propose that when a map is computed, it is split in several tiles
(their number depends on the expected granularity). A click is simulated
at the center of each tile to define a tile neighborhood and a set of concepts
that would be associated to a document placed in the center of this tile with
the USI algorithm. For each tile, we compute the semantic similarity of
its center with those of other tiles. We then associate, for each tile, the
neighbor tiles which have a semantic similarity higher than o.95 with this
one. When a user hovers over any tile of the map, those that are similar
are highlighted such that he/she easily knows how homogeneous the zone
is and how careful he/she should be when clicking. Figure p.q shows an
example of this process. When the grey zone islarge (a), it means that click
imprecision does not matter because the result will be roughly the same
anywhere in this zone. Conversely, when the grey zone is small (b), the
user should be careful when clicking since any imprecision would highly
impact the suggested annotation. Of course, computing annotations of
the center of the tiles is again time consuming, so this kind of use case
would be much slower than a fully automated one. However, it would be
faster for the user than an interface that does not help him/her and who
would spend a lot of time thinking where exactly the click should be on

cases when it does not matter due to annotation homogeneity.

2.5.2. AFTER ANNOTATING
Despite efforts to automate the processes, experts are solicited for some

applications such as annotating papers for PubMed. Although the anno-

tation proposal is automated, it is sometimes crucial to rely on experts to
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v,..,.‘“p-

(a) The user is hovering an area with ho-(b) The user is hovering an area with het-
mogeneous annotations. erogeneous annotations.

Figure 2.9.: Representation of areas that let the user know how impreci-
sion of a click would impact the results. On the left, the users
donot have to worry about imprecision while on the right they
need to be careful.

validate or to amend this proposal. This task is easier than a fully man-
ual annotation as they only have to confirm the most suggested concepts
and remove or add a few ones. Nonetheless, a rather inaccurate concept
would rarely be replaced. For example, say a paper should be annotated
by CarciNoMA, BasaL CELL. If the method returns Carcinoma, would the
expert intuitively change it to pick the most accurate CarciNOMA, BasAL
CeLL? We expect from those experts to have an excellent knowledge of the
thesaurus, but memorizing the whole structure and its 27,000 concepts is

nearly impossible.

One solution to overcome this situation is to display the list of concepts and
for each of them, to propose related concepts by using semantic similari-
ties. The pairwise similarities can be stored in a database as explained in
s2.4.3.3. Or, even more efficiently, the closest neighbors of each concept
can be stored (e.g. the twenty closest neighbors of each concept according
to the Lin SSM) and proposed to the user. In any case, as long as the user is

part of the loop, some effort has to be invested to ease and speed up their
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System name Description

USI 10 neighbors Default version of USI where 10 neighbors are selected

USI 20 neighbors Default version of USI where 20 neighbors are selected
UST abstract | “USI 10 neighbors” where semantic similarity is chosen using an abstract framework
USI baseline “UST abstract” integrating the provided baselines

Table 2.3.: Description of the systems submitted to BioASQ 2015.

work because it will always be the limiting factor in the process.

2.6. Evaluation of the approach: the BioASQ 3a task

We took part in the 3a task of the 2015 BioASQ challenge. This task con-
sists of annotating biomedical papers given several inputs: the PMID—an
identifier on PubMed—, the title and the abstract of each paper. Each par-
ticipating team can submit results of up to 5 systems. We thus participated
with the system described above and we created some variants presented
in table 2.3 to investigate several questions regarding USI. The following

sections detail several upgrades we made for those variants.

2.6.1. THE OPTIMAL NUMBER OF NEIGHBORS

In a previous study (Huang et al, 2o11), the authors already estimated the
optimal number of neighbors to consider for a k-NN approach. We con-
ducted a similar study to see whether or not our application needs more,
less or the same number of neighbors to give the best scores. While many
approaches identify the neighbors to define a pool of candidate concepts
and then rely on NLP strategies to score them, USI actually uses them to de-
fine the candidate concepts but also for selecting the relevant ones. There-

fore, a too rich neighborhood may lead to some noise in our method and
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less accurate annotations, while too few neighbors may not provide enough

candidates.

It thus seems crucial to study the impact of the size of the neighborhood
in our applications instead of solely relying on the previous analysis. We
tested a neighborhood ranging from 5 to 40 documents. To do so, we ran
USI 100 times on the BioASQso000 dataset at each value of k and took the
F-score and the average processing time. The results of this analysis are
presented in Figure p.1g". It shows that a plateau of F-score performance
is reached at 10 neighbors. It stays stable up to 20 neighbours where the F-
score starts decreasing. We explain this behaviour with the fact that con-
sidering too many neighbors induces noise. The processing time seems to
increase linearly, which can be explained by the fact that the algorithm
complexity is linear in k. However, we would expect that the size of A,
(n, in the complexity details) leads to a non-linear increase. This can cer-
tainly be explained by the fact that since the neighbors are close to the
document, they are certainly close in their annotations, so the size of A,
does not increase much when adding similar documents in the neighbor-
hood. The same study has been performed regarding the semantic simi-
larity score. The resulting curve is flatter, showing once again that in this
context, evaluating the results by using the underlying structure of the
KR is more robust than the classical F-measure. Still, the score decreases
passed 20 neighbors. We conclude that it is counter productive to take too
many neighbors as it may decrease performances while increasing compu-
tation time (even linearly). For the BioASQ challenge, we thus test a USI

variant (USI 10 neighbors) considering 1o neighbors as it seems to give the

“Those results have been obtained with an UNIX machine with a 3.4CHz microprocessor
and 16GB of RAM.
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best scores in terms of F-measure and processing time on the BioASQ5000
dataset. We also submitted a system considering 20 neighbors (UST 20

neighbors) since this gives the best results for the semantic score.

2.6.2. Q_UESTIONING THE SYSTEM MEASURES

One main question USI may raise concerns the impact of the semantic sim-
ilarity measure on the performance of the system. Can werely on the same
semantic similarity measure irrespective of the application, or is it so im-
portant that an analysis should be performed prior to any real case index-
ing based on USI? Those questions may also bring up some engineering con-
clusions. For example, if semantic similarity matters substantially, then

USI should be configurable to use as many measures as possible.

We used some provided test sets to make experiments on several seman-
tic similarity measures. We chose to keep the aggregation formula (BMA)
because it is quite a neutral composite average and there is nothing that
seems to justify the use of more complex aggregating functions for this
task. Therefore, the experiments have been made on several pairwise sim-
ilarity measures and ICs, both of which can have an impact on the results.
It has been recently showed that many measures proposed in the literature
can be viewed as an instantiation of a handful of abstract models (Harispe
et al], po14b). For example, the Lin similarity is an instantiation of the

ratio model simgy proposed by [[versky (1977):

f(ANB)

af(A\B) + BE(B\A) + f(ANB))’ (2.20)

simpym(a,b) =

where a, b are concepts, A, B are their respective sets of features, fis a func-
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Figure 2.10.: The impact of changing the number k of neighbors between
5 and 40 on the the semantic score (a), on the F-score (b) and
on the processing time (c) of USI.



CHAPTER 2 ** Semantic indexing

tion defined on the sets of features and a, [ are two parameters. For the Lin
measure, o = 0.5, p = 0.5, fis an IC function. Itis easy to implement and
test several variations of the ratio model by using the SML. We tested every
variation of this model with a minimum value of 0 and a maximum value
of 20 for a and P, with a step of 1. The choice of an IC may also have an im-
pact on the results. We thus tested this model using 5 different ICs: Seco
(Seco et all, 2oo4), Zhou (Zhou et alJ, 2008), Sanchez (Sanchez and Batet,
2011), Sanchez adapted 2 and a simple IC based on the number of ancestors.
Figurep.1jshows the impact of changing the parameters of the ratio model.
Each subfigure represents the variation of a (on the x-axis) and B (on the
y-axis) for a given IC metric and their impact on the final F-score of USI (on
the z-axis) for the BioASQsoo00 dataset. It seems there is not much varia-

tion in the annotations. The value at a = f = 0 is an exception and always

leads to a score of ~ 0.38. Indeed in this case, simpy(a,b) = K&0%)

— f@anmB) 1

therefore all the concepts are similar to each other and USI randomly re-
moves concepts from Ay, which leads to an inaccurate result. Otherwise,

annotations are rated with an F-score that ranges in [0.56; 0.60].

Table -4 completes the Figure by proposing, for each IC measure, the max-
imum and minimum F-score obtained—after removal of thea = = 0

value—and their corresponding «, B values.

Two interpretations can be drawn from the observation of the Figure and
the table. In general, the choice of the SSM is not very important for USI.
Someone who wants to implement USI should not spend a lot of time on
this and simply make sure that the Lin SSM is appropriate. However, in

the context of a challenge or a sensitive application, no increase of per-

2This is from another formula in (Sanchez and Batet, po11)
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(a) Seco’s IC (Seco et all, (b)Sanchez’sIC (Sanchez (c)Zhou’s IC (Zhou et all,
2004)). and Batef, 2o11). 2008).

RN

(d) Basic IC based on the (e)Adapted Sanchez’s ICE,
number of ancestors.

Figure 2.11.: Impact on the F-score for the BioASQ5000 dataset of changing
the IC measure and the a, B parameters from 0 to 20 with a

step of 1.
Maximum Minimum
IC metric F-score  « B | F-score « B
Seco 0.5887 2 1 0.5627 o] 20
Zhou 0.5903 2 2 0.5654 o 20
Sanchez 0.5872 3 4 0.5668 o) 1
Sanchez adapted 0.5870 3 2 0.5626 o) 20
Ancestors 0.5899 1 1 0.5650 o] 20

Table 2.4.: Maximum and minimum F-score and their corresponding val-
ues of a, B, obtained for each IC. The valueof a = B = 0isig-
nored.
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formance should be neglected so we created a USI variant called UST ab-
stract that relies on the triplet a, 3, IC that provided the best score on the
learning BioASQs000 dataset: o = 2, 3 = 2 and IC function is Zhou'’s (Zhou

etall, 2008).
2.6.3. INCLUDING THE BASELINES

In this BioASQ 2015 challenge, a slight variation of the F-score can play a
drastic role as top systems often provide F-scores different by o.01 or less.
Therefore, we decided to adapt UST abstract to this challenge by taking
baselines into account and we created the UST baseline variant. MeSH Now
(Mao et all, 2014)) is a baseline system this year and was the winner of last
year’s challenge. The aim when creating a new system is, then, at least
to obtain better results than MesH Now knowing that results of MeSH Now are

available for the BioASQs000 dataset.

First, we analyzed the differences between the baseline annotations and
ours. The MeSH thesaurus contains headings called “check tags” B. There
are 33 of them and they are widely used in annotations of papers, for ex-
ample: HUMAN, ADULT, ANIMAL, etc. In our outputs, we looked for the con-
cepts that are frequently wrongly predicted or frequently missing from our
predictions and most of them were check tags. USI is actually pretty bad at
predicting those tags. The fact that USIis a generic approach—it solely re-
lies on the neighbors and not on the text features, for example—implies
that it may lack some precision in some applications, particularly in com-
parison with very powerful approaches such as NLP. The problem of the
checktags directly comes from this limitasitisdifficult to predict the correct

checktags when only the neighbors are used. For example, consider a paper

Bhttp://www.nlm.nih.gov/bsd/indexing/training/CHK 010.htm
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to be annotated for which the expert annotation is cARcINOMA and HUMAN.
Assume for this example that closest neighbors are papers annotated by
CARCINOMA, MOUSE, etc., rarely mentioning HumaN. If the system uses no
clue from the abstract or title text, it will barely be able to predict those
tags. Since the baseline includes NLP tasks (with MetaMap) and seems to
better predict the checktags, UST baseline systematically adds the check tags

proposed by MeSH Now.

Second, we thought that the pool of candidate concepts may be too poor
and increasing the number of neighbors would not help (see §2.6.1). MeSH
Now outputs propose concepts coming from neighboring documents and
concepts extracted from the text. Therefore, we enriched A, with the con-
cepts proposed by MesH Now. This modification led to the same F-score as
MeSH Now—although the annotations were different. Finally, we defined a
simple set of rules to combine MeSH Now and USI outputs. Let us define
a set of concepts Aprocessed = A* U Apaseline Where A* is the ouput of UST ab-
stract and Apaseline 1S the output of MeSH Now. Then, for each concept of this

set, UST baseline keepsitif
» itis present in both A* and Avaseiine,

* oritis present in A* only but removing it from A would decrease the

objective function score by more than € € [0;1],

e oritispresentin Apaseine Onlly anditisin the t € N top concepts of the

list,
e Oritis presentin Apaseine and it is a check tag,

otherwise it is deleted. € and t are optimized by using the BioASQ5000

dataset. This process only requires to store the value of f(A) when look-
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System F-measure on BioASQ5000
MeSH Now BF 0.608
USI 10 neighbors 0.604
UST abstract 0.608
UST baseline 0.615

Table 2.5.: Summary of results obtained by USI systems on the BioASQ5000
dataset in comparison with the baseline, MeSH Now.

ing for the concept to remove. During the loop, USI tries to remove each
concept and for each removal, it computes f(A). This value is stored and

updated for each concept of A each time USI tries to remove it.

2.6.4. RESULTS OF THE CHALLENGE

Let us first consider the results obtained on the BioASQs000 dataset by our
variants presented in table p.5. Interestingly, this table shows that UST ab-
stract performs as well as the best system of last year’s challenge, MesH
Now BF. While MesH Now BF is designed for annotating biomedical papers,
we see that a generic method can reach the quality of such a specific sys-
tem, mainly because of the use of semantic similarities. By taking the MeSH
Now BF baseline into account, USI baseline shows slightly better scores on
BioASQs5000 than UST abstract. This proves that combining generic and
specific approaches is a relevant perspective of research for designing new

systems.

As for the challenge, since UST baseline systematically outperforms other
variants, we simply refer to it as USI. We expected such result as a simi-
lar conclusion could be drawn from the table g.§. The results of the chal-

lenge are split in three datasets of 5 batches each and the systems are eval-
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uated once per dataset. The best batch-level results obtained by USI is on
the batch 1 week 2, where it ranks second among 10 systems participating
to this dataset™. In terms of dataset-level results, USI gets its best scores
on the first dataset as it ranks 3rd. Balikas et al (2015) summarize the par-
ticipations to the tasks 3a and 3b of the challenge. They mention that since
two baselines of MeSH Now are proposed this year and that it was the win-
ner of last year’s edition, “[they] expected these baselines to be hard to beat”. No-
tably, on the first dataset, USI outperforms MeSH Now while on the other
ones, MesH Now BF has a slight advantage. These results are outstanding
considering the fact that USI has not been originally designed for annotat-
ing biomedical papers. Neither the title nor the abstract of the papers to be
annotated are used and still, USI gets among the top systems of the chal-
lenge. It ranks 4th out of 13 on the second and third datasets, for which
MeSH Now BF is ahead of USI. Overall, even if not in the top two systems, USI
is thus surprinsingly powerful compared to specific approaches. Besides,
our participation showed that the method can handle large-scale indexing
as a high number of documents had to be annotated for each batch and we
managed to submit the results of all four variants of USI for each of them

without parallelization, in less than 21 hours.

2.7. Extension of USI to several contexts

We made two applications in two different domains: enrichment of a sci-
entific database with new papers and annotation of movies. Indeed, al-

though this chapter focuses on the example of indexing biomedical papers,

“Participation to at least 4 batches out of 5 is required to be evaluated on a given dataset.
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the scope of USI is not limited to it. The framework behind USI only as-
sumes that a list of neighbors can be retrieved and that those neighbors
are annotated by concepts from a structured knowledge representation. It
then uses the neighbors to define a conceptual annotation for a new doc-
ument. Validating USI on other domains is not as easy as we could not
find benchmarks or reference datasets for evaluating automatic indexing
of other media. Besides, we think it is important to verify that our method
can be easily adapted to another domain with different KRs and different
descriptions. Finally, these applications also allow anyone to try the inter-

active map as described in p.5.1.

2.7.1. ENRICHMENT OF A SCIENTIFIC DATABASE: BIOUSI

Demonstration at: http://bio.usi.nicolasfiorini.info/

This application illustrates the task detailed in this chapter: semantically
annotating biomedical papers. The following sections detail the data used

in this application and how it has been implemented.

2.7.1.1. Data

bioUSI relies on a database that has been elaborated by our team, consist-
ing of relations between authors, their papers and conceptual annotation

associated to those papers. It contains:
* 99,000 authors,

* 38,000 papers,
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* 500,000 annotations , amounting toaround 13 concepts per document.

This corpus focuses on the French medicine community dealing with can-
cer. It was created for the AVieSan (Agence nationale pour les sciences dela Vie et de
la Santé) in order to help this community in its research. The database con-
tains many other relationships such as teams of authors, research units
and labs. It has been used several times to make adapted tools for this com-
munity such as OBIRS (Sy et all, 012), a semantic IRS or CoLexIR (Ranwez

etall, 2o13), an IR tool that benefits from lexical analysis.

2.7.1.2. Interactive interface

When a user wants to annotate a document, he/she needs to fill a form
specifying: (i) the title of the paper, (ii) the authors and (iii) the citations
of this document. The author field benefits from an autocompletion tool.
The system proposes names from the database that match the first typed
letters in the field and the user can easily pick the correct ones (see Figure
B.12a). One can imagine that the form could be automatically filled after
uploading a PDF file of the paper to be annotated or that a bibtex file would

be parsed for instance.

Once the form is sent, bioUSI needs to compute an MDS based on the infor-
mation the user provided. To this end, bioUSI constitutes a set of papers
selected on two criteria, instead of using PMRA™: (i) it selects papers in-
cluding authors that co-authored the target document; (ii) it fetches the
papers cited by the target document from the database or from PubMed de-
pending on their availability. bioUSI only needs their title, list of authors,

date of publication and the list of MeSH terms associated to them. This
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process follows the assumption proposed by Delbecque and Zweigenbaum
(2010) that previous papers of the co-authors and the papers they cite are
certainly related to the one to be annotated. In this application, many doc-
uments are not indexed in PubMed as some of them are French papers or
documents that are not published scientific articles but reports for exam-
ple. An IRS such as PMRA* would thus not be relevant in this context, ex-
cept for enriching the map with other documents. Once co-authored and
cited document information is retrieved, bioUSI creates an interactive 2D
map based on the MDS technique presented in §p.5.1.1 as showed in Fig-
ure p.12. The user can interact with the map by clicking on it once he/she
knows where the document should be located. This triggers the selection
of the ten closest neighbors according to the map and the launching of the
USI algorithm with these neighbors as input. bioUSI then displays the an-
notation proposal of USI (see Figure p.12d).

The server of bioUSI is a Tomcat 7 server that persistently stores the MeSH
and provides two Web services. One is the MDS Web service that is called
when the user sends the form. This Web service returns a list of coordinates
associated with the data of each paper to be displayed on the map. The

second one is an annotation Web service based on the USI algorithm.
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BioMed USI  About References Annotatel Howto  Contact
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(b) The MDS map presented to the user. Each item represents a paper.
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2.7.2. ANNOTATION OF MOVIES; MOVIESUSI

Demonstration at; http://movies.usi.nicolasfiorini.info/

moviesUSI is a more general application. The challenge here was to find
data to annotate semantically that would make sense for anyone. movies-
USI also aims at testing the genericity of USI to see whether or not it is
possible to load any knowledge representation and annotate any kind of
document. As moviesUSI uses cutting-edge functionalities, it requires a

recent browser to work properly (tests have been done on Chrome v43).

2.7.2.1. Data

Freebasel is a great database of linked data. For this application, we down-
loaded a dump of Freebase and extracted all the movies it contains. The set
of movies constitutes the documents this application focuses on. We con-
sider that each movie is annotated by several genres, but it is important
to note that Freebase associates plenty of information to each movie that
we decided not to use for this application. We chose to extract the movie
genres as they are all structured. This structure of genres can be seen as a
simple ontology: each genre isunique and subsumes/is subsumed by other

genres. The database of moviesUSI thus contains:
» 238,000 movies
* 400 genres organized as a DAG

* 800,000 annotations, that is genre «» movie associations

Shttps://www.freebase.com/
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2.7.2.2. Interactive interface

This tool is a simple sandbox exploiting USI genericity and we suppose that
users could use it to manage their video library containing movies that are

in Freebase (hence already annotated) and some that are not.

We ask the user to build their collection of movies. An autocompletion tool
helps here too to enter the movie names (see Figure p.13d). Then, a map
representing the collection is proposed to the person. The technologies and
techniques used in this application are the same as in bioUSI—that is, Web
services, MDS, etc. Note that we could use further details of the movie
to annotate in order to build the map. For example, fetching the movies
of the same actors, or of the same film-maker. The main difference with
bioUSI is that the ontology is now a hierarchy of genres and the map is
built solely using the movies the user has in his/her own local database
(see Figure p.130). A click on the map will again generate an annotation for
this location as in Figure p.13d. We also tried to make the user interaction
better by displaying a picture of the movie when available. Hovering over a
movie displays a tooltip with its full name and year. It is also highlighted

in the list on the left.

With this application, it is much easier to see the consistency of USI, ir-
respective of the domain ontology and the type of documents. The few
users who tried this application gave us good feedback about it. They liked
the whole interface and thought that the annotations suggested by the ap-
plication made sense. The quickness of the whole process has also been
appreciated, especially the rendering of the map and the computation of

movie genres after a click on the map. Besides, the creation of such an
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application is in tune with the objective of the LCI2P laboratory which pro-
motes technological transfer towards industrial partners. Such technolog-
ical transfer has been previously achieved with similar applications and
moviesUSI is a serious candidate for creating or enhancing partnerships as

it gives a great example of what USI can accomplish.

2.8. Chapter summary

This chapter introduced the thorough work that led to the creation of USI—
User-oriented Semantic Indexer. It was motivated by the need, in our opin-
ion, for more generic indexing methods relying on ontologies. USI is an
attempt to this end and explores the possibilities of exploiting semantic

similarities to replace text-specific applications in the biomedical field.

USIis an indexing technique built upon an objective function modelled to
define what is expected from an annotation, considering a neighborhood
of semantically annotated documents. A heuristic algorithm implements
this objective function to approximate the optimal annotation and a com-
plexity analysis and optimization have been performed to make it faster.
The result of this work is a blazing fast, flexible and accurate indexing
method. It has been proved to be even faster than current ML approaches,
knowing that they are already famous for their swiftness. Besides, while
ML-based techniques require a (usually heavy) learning set, USI only has a

few parameters that can be optimized on a small set of examples.

We also successfully put USI’s flexibility to test with the BioASQ challenge
by implementing four variants of the algorithm. The results are outstand-

ing compared to our expectations: USI ranks in the top systems despite its

96



2.8 % Chapter summary

*ssa201d uonyelouTe 93 Jo da3s IsI1y 93 ST 31 SUI[[I] "ULI0] [SNSITAOWI ()

9|dwexa peo

31eplleA

(666T) X113 YL

(9002) sez1S pue sadeys :4ood ay3 BluuIM

(€102) sqor (896T) ASssApO 92edS v :100C

(086T)oeg SIS 2.1dWi3 Y1 :A 3posid3 SIEM Jels (E86T) IP3F 330 UINISY :|A 3POsIdT SIeM Jeis

(0102) uondsou)

(966T)21ue3lL (9667T) 3|q1ssoduw] :uoissiN

(1002) 2u03s s, Jaydosojiyd ay3 pue ss}od ALieH (0002) UsIN-X (6002) SULIBAIOM $SUIBLIO USN-X

(666T) 31N US31D 3y | (#002) 2 3WnjoA

(2002) Ue-Japids (5002) suiSag uewseg (TT02) @€ - 9PRy Sy ‘S19uniojsues).

(2102) Pauteydun osuelq (££6T) 3doH MAN VAl 3posid3 SIeM Je3s

(£002) 2O suosdwisay | (266T) a0 3y ‘Adiar pue wo |

(¥96T) 498uipioD (2002) 5324935 40 JaquieyD ay3 pue 4a330d AleH
(E00Z) PapPeO|ay XIjeiN 3y L

Il (£002) T 3Wn|oA | (CT02) 35839 3y3 pue Aneag

e

Aseuqi) unoA ajeasd

S30UdIRJRY noqy S9lA0W-ISN

97



CHAPTER 2 ** Semantic indexing

USI-movies About References Contact

Automatic annotation

Kill Bill Volume 1 (2003)
The Green Mile (1999)

The Matrix (1999)

The Matrix Reloaded (2003)

Harry Potter and the Philosopher's Stone
(2001)

Goldfinger (1964)

Star Wars Episode VI: Return of the Jedi
(1983)

Star Wars Episode V: The Empire Strikes Back
(1980)

Star Wars Episode IV: A New Hope (1977)
2001: A Space Odyssey (1968)
Transformers: The Ride - 3D (2011)

Batman Begins (2005)

Winnie the Pooh: Shapes and Sizes (2006)

Tom and Jerry: The Movie (1992)

The Simpsons Movie (2007)

(b) The MDS map presented to the user. Each item represents a movie, and a tooltip displays its title when hovered.
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genericity. This remark stresses that USI seems to be a powerful tool for
semantic indexing in general as it performs as well as state-of-the-art ap-
proaches for textual documents. However, it is not the top system and this
proves that text-specific applications still are the best choice approaches for
text-document indexing. We note nevertheless that the scores of all sys-
tems are very close, which makes us wonder if a plateau has been reached
in this field. This statement also questions the relevance of comparing sys-
tems when the scores are this close: does the difference mean anything
at all? We will certainly have more insight into this question in the next

edition of the BioASQ challenge in 2016.

Although USI can be run automatically, itis meant to be user-oriented. We
thought that in many fields, the end-user would like to have some control
over the annotations of the documents, so USI might be used as a proposal
generator. We detailed two ways of including the user in the process. The
most common one in the literature is to propose the annotation and let
the user alter it. We investigated and proposed a map of potential neigh-
bor documents to the user so that he/she may manually refine the neigh-
borhood. The idea is that automatically defining the neighborhood may
introduce a bias at the beginning of the process. We thought about the
visualization of the potential neighbors as a map and described a visual so-
lution to help the user when clicking on the map to limit imprecision. The
creation of such interactive, ergonomic and flexible interface is in agree-
ment with the LCI2P objectives of creating and proposing new industrial
partnerships. Indeed, these tools are ready for technological transfer, as

it has already been done many times in the team.

Finally, USI has been implemented in two applications, one related to bio-
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medical papers, the other one to movies. Both of them show a good exam-
ple of the potential of USI for annotating documents after meeting some re-
quirements (such as the need for already annotated documents). Nonethe-
less, the framework from which USI originated—an objective function and
an optimized algorithm—can be at the basis of many extensions. One ex-
tension, semantic indexing, has been deeply explored in this chapter. The
next chapter shows that another feasible extension of this framework is

semantic clustering and labeling.
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3.1. Abstract

The last chapter introduced an indexing framework based on semantic sim-
ilarities. This allowed us to create a generic approach for annotating any
type of document. USI has been shown to perform well compared to state-
of-the artapproaches submitted to the BioASQ 2015 challenge. This chapter
presents one of the numerous possible extensions of this framework. The
use case presented here is a generic hierarchical clustering of documents
with labeling of the clusters. We compare our novel approach to classical
ones and study the benefits and limits of the use of semantic similarities

in this context.

CONTRIBUTIONS RELATED TO THIS CHAPTER

Fiorini, N., Harispe, S., Ranwez, S., Montmain, J., & Ranwez, V. (2015). Annotation

sémantique de clusters. In 16e conférence ROADEF, Marseille.
A semantic clustering interface: http://clustering.nicolasfiorini.info

A semantic clustering benchmark: http://benchmark.nicolasfiorini.info

A semantic clustering approach, SC: http://sc.nicolasfiorini.info

104


http://clustering.nicolasfiorini.info
http://benchmark.nicolasfiorini.info
http://sc.nicolasfiorini.info

3.2 < Ceneral information on hierarchical clustering

(a) Flat clustering (b) Hierarchical clustering

With the a-cut: With the B-cut: With the y-cut:

(c) Clusters obtained with different cuts.

Figure 3.1.: Flat clustering (a) proposes a single partition of data while hi-
erarchical clustering (b) allows to infer several possible parti-
tions depending on the height at which the tree is cut (c).

3.2. General information on hierarchical clustering

As a general description of clustering has been proposed in §t.2.3, this sec-
tion focuses on hierarchical clustering. The main difference with other
approaches such as the k-means is that it provides a hierarchy of classes
represented as a tree instead of a flat partition of the data. In other words,

several partitions can be drawn from a single hierarchy (see Figure B.1).
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The hierarchical clustering, or equivalently the tree representing it can
be obtained by following two strategies: an agglomerative or a divisive
strategy. The construction is said to be bottom-up for an agglomerative
strategy—the tree is built from the leaves to the root—and top-down for
a divisive strategy. Given a list of n documents, top-down approaches re-
quire for each iteration to find the most distant pair of subsets among a
list of 2" subsets. Usually, top-down approaches use a flat clustering tech-
nique such as the k-means as a subroutine to keep a polynomial time com-
plexity. The bottom-up construction is conceptually easier as it only needs
to be able to find the closest clusters at each iteration. In total, we need to
compare 22 pairs of clusters. For thisreason, the bottom-up approach is
more widespread and we decided torely on it. A detail of the method is pre-
sented in Figure .3. There are two main steps in Hierarchical Agglomera-
tive Clustering (HAC). One, the algorithm is initialized. Each document—
more commonly called observations in the clustering community—to be
clustered is put in a singleton cluster and a pairwise similarity matrix of
all singletons is computed. Two, the closest clusters in the matrix are iden-
tified (a) and gathered. This means thata new cluster is created (b) and the
matrix is updated by removing the two clusters and adding the new one
(c). The similarities of the new cluster with every other have to be calcu-
lated as well (d). This second step is repeated until there is only one cluster,
that is all clusters have been agglomerated. Note that branch lengths are
arbitrary in the schema for the sake of understanding. However, branch
lengths are important when partitioning from the tree as in Figure R.1b

and they are usually based on the similarity value of the agglomerated clus-

ters in the matrix. The closer the clusters, the shorter the branches.

The key feature of HAC to define is clearly the way to compare (sets of) sin-
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Figure 3.2.: The hierarchical agglomerative clustering. Step 1 initializes
the clustering by creating cluster singletons and a pairwise
similarity matrix. Step 2 consists in finding the closest clus-
ters in the matrix (a), creating a new cluster f gathering them
(b), updating the similarity matrix accordingly (c and d). Step
2 is repeated until only one cluster remains.
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gletons that allows to build and update the similarity matrix. In fact, the
HAC requires the definition of two functions called the similarity metric
and the linkage criterion. The former is used to fill the initial matrix of
similarities (step 1). Depending on the kind of data on which the cluster-
ing is made, several existing functions can be used for this purpose. For
example, an Euclidian distance is appropriate for comparing coordinates
and the Levenshtein distance for comparing strings. More elaborated dis-
tances can also be imagined, for example based on n-grams (all possible
strings of size n of a text) for comparing texts, or on a related domain such

as the IR relevance models.

When two clusters are agglomerated, the similarities of the newly created
cluster with others are calculated by using the linkage criterion that de-
fines how to compare two sets of observations. The choice of this function
may impact the cluster shape and the branch lengths of the resulting tree.
Most of the linkage criteria are function of the pairwise similarity metric
that is used to compare the singletons. To cite the most common ones,
there are the single linkage SLINK, the complete linkage CLINK or the av-
erage linkage ALINK

SLINK(A, B) = max{s(a, b)} (3.1)
ae
beB

CLINK(A,B) = ri1€il_r\1{s(a, b)} (3.2)

ALINK(A,B) = % > s(ab), (3.3)

acA beB
where A, B are the two clusters that are agglomerated, a, b are documents

within A, B respectively and s(a, b) is the similarity metric used at step 1.
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Let us study the complexity of the HAC compared with that of the k-means.
As Manning et al] (2008) point out, the time complexity of k-means is O(IK
NM) where I is the maximum number of iterations, K is the number of
clusters, Nis the number of vectors (one vector represents a document) and
M is the space dimensionality. This means that the k-means algorithm is
linear in all variables, although the authors also note that M can be high
depending on the vector representation, e.g. texts represented as vectors
of most frequent words. The HAC on the other hand has a complexity of
O(N* + N*M) for a naive algorithm and O(N°M) for most real case algo-
rithms. Note also that the complexity of HAC highly depends on the link-
age function since this is the one that is frequently computed. The pair-
wise similarity of all documents is computed once and for all at the begin-
ning of the process. Therefore the main benefit of relying on a hierarchical
approach is that the output contains more information. The tree structure
allows the users to study several granularities, which we explore in this

chapter.

3.3. Related work

As described in §i.2.3, much effort has been devoted to the creation and
improvement of clustering methods in general. In this chapter, we focus
on clustering approaches that take into account semantic data, be it con-
cepts or hierarchical structures in general. We also tackle the problem of

annotating clusters, especially after or during hierarchical clustering.
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3.3.1. SEMANTIC CLUSTERING

Let us have an overview of the work we can find when looking for semantic
clustering. It quickly appears that there are some methods called seman-
tic or mixing clustering with ontologies or metadata, however, there is no
proper consensus on a field called semantic clustering the same way we
define it, which is clustering documents by using their semantic descrip-
tions. Kuhn et al (2007) for example introduced the concept of semantic
clustering as the fact of grouping documents containing the same vocab-
ulary. This approach is called semantic as they try to capture the mean-
ing of the documents to cluster them. The aim of their work is to create a
method to understand the source code of softwares in a matter of reducing
the time spent reading the code for maintaining it. Although most ap-
proaches use the documentation or external data, they claim that seman-
tics are contained in the formal part of source code, i.e. variable names,
function names, etc. Their method involves latent semantic indexing (see
§2.2.2.1) to compare pieces of code that can then be clustered. The clusters
they create can also be automatically annotated by using the data of the la-
tent semantic indexing, thatis, identifying for each cluster the terms that

mostly contributed to their creation.

Clerkin et all (2001) propose to use clustering in order to discover and cre-
ate ontologies—and not using ontologies to cluster documents. They use
a conceptual clustering algorithm called COBWEB (Fishet, 1987) and trans-
late the result in RDF (Resource Description Framework), a mean of rep-
resenting Semantic Web objects. Conceptual clustering algorithm such
as COBWEB aim at ordering observations in hierarchical classes with the

particularity that each class (here, called concept) is described by a model
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Name BodyCover HeartChamber | BodyTemp | Fertilization
Mammal hair four regulated internal
Bird feathers four regulated internal
Reptile cornified-skin | imperfect-four | unregulated | internal
Amphibian | moist-skin three unregulated | external
Fish scales two unregulated | external

Table 3.1.: A set of observations described by four properties (Fisher, 1987).

that summarizes the attribute-value distributions of objects classified in
it. This assumes that, as for HAC, observations are associated with descrip-
tions in the first place, such as provided in table §.31. The goal and context
of conceptual clustering is thus closer to classical clustering than what we
want to achieve, although the vocabulary they use to describe the methods

is quite similar.

Some other studies are nevertheless closer to the scope of our work. Some
researchers have for instance studied the impact of integrating knowledge
baseinformationin clustering algorithms (Bharathiand Venkatesan, 2013).
To the best of our knowledge, Hotho et al. (2001, 2003, 2003) have been the
first to consider this kind of approach. Their series of works consist in en-
riching document annotations with background knowledge—in the most
recent part, WordNet. Everything starts with the association of each docu-
ment with a vector of term frequencies, further referred to as term vector.
This vector is used in classical clustering approaches to compute document
similarities. Then, they test all combinations of a few strategies for each

step of the process:
First (prune) They prune the vectors with a threshold of o, 5 or 30.

Second (dis) For each term in the vector space, they request the equiva-

lently corresponding concepts in WordNet. They either fetch all cor-
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responding concepts returned by WordNet (all); or they get only the
first concept returned (first); or they disambiguate the term using

an algorithm similar to that of Agirre and Rigau (1996) (context).

Third (enrich) They modify the term vectors by taking the mapped concepts
into account. The add strategy simply concatenates the concepts with
the term vectors. The repl strategy replaces the terms by their asso-
ciated concept(s) from WordNet, if applicable, while the rmv strategy

builds a vector of concepts only and removes all terms.

Fourth (hyper) Inorder toconsider the inherent structure of WordNet, they
include either r = 0 or r = 5 next hypernyms of the concepts that en-
rich the term vectors. They also update frequencies in the vector such
that any occurrence of a concept counts as an occurence of its hyper-

nyms.

Best purity of clusters is achieved with the following combination of strate-
gies: prune=30, dis=context, enrich=add, r=5. Overall, the conclusion
clearly is that relying on conceptual descriptions of documents improves
the quality of the clusters. The authors explain that this improvement is
due to the relationships between concepts (and thus the presence of com-
mon hypernyms, in their approach), where classical text clustering lacks
such relationships. For example, they show that documents about corrEE
and cacao were gathered in a roop cluster while food was never literally
mentioned in those documents. (Baghel and Dhit, 201d) also propose an
approach based on WordNet. In fact, they proceed very similarly to the pre-
viously detailed approach. They rely on concept frequency vectors that are
built from texts, except that they use a hierarchical clustering approach.

Breaux and Reed (2005); Sedding and Kazakov (2004)) propose slightly anal-
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ogous techniques relying on a more classical HAC algorithm and k-means,

respectively.

Spanakis et al. (2011) prefer to use Wikipedia to test their novel Conceptual
Hierarchical Clustering that they abbreviated CHC. They suggest a richer
model for representing documents than weighted concept vectors. After
having extracted concepts and retrieved their corresponding Wikipedia pa-
ges for each textual document, they build a feature set for this document
including several distinct features. The weighted frequency Wfreq is the
feature that is used in WordNet based approaches. They also compute Link-
Rank that measures the importance of concepts in documents by calculat-
ing the number of relationships each of them has with the others by observ-
ing links between corresponding Wikipedia pages. The ConceptSim feature
calculates the term-based similarity (i.e., using classical term vectors) be-
tween a document and the Wikipedia page corresponding to one of the con-
cepts that are extracted for this document. OrderRank is a value associated
to each concept that is bigger when the concept appears early in the docu-
ment. Finally, Keyphraseness captures the descriptive power of concepts in
Wikipedia by relying on how the concept is referred to in the articles: plain
text or a link to an article. The more a concept is used as a link in the ar-
ticles, the more it has descriptive power. CHC is a hierarchical clustering
technique that then relies on a combination of these features to build the

tree.

The particularity of work by Yoo and Hu (2006) is that they propose to pro-
vide an understandable representation of the clusters that are created. Clus-
tering is made in four main steps in their approach. First, as for most pro-

cesses detailed so far, document terms are mapped with concepts of KR
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Figure 3.3.: Individual Graph Representations for each document (Yoo and
Hu, 2006).

(here, the MeSH). A graph representing each document is built, that con-
sists in the shortest path linking all concepts. In other words, the graph
contains all concepts of a document and all their superclasses up to the
superclass they share (see Figure B.3). Second, the individual graphs are
merged into a corpus-level graph. It is enriched with relationships of co-
occurrences of concepts. An algorithm calculates the number of co-occur-
rences needed for a pair of concepts to be linked and for each relevant pair,
anedgejoining themisadded to the graph. Third, they partition the corpus-
level graph and define classes associated with a subgraph of the corpus-
level graph. Finally, documents are associated with classes. The authors
claim that graph similarity measures are not applicable in this context as
the graphs are too different in terms of vertices and edges, instead a voting
mechanism allows the system to associate each document representation—
thus each document—to a cluster. In addition to proposing a novel way to
use ontologies, this work is a step towards the idea of annotating clusters
that will be discussed in §§.3.2. Indeed, the resulting clusters have a graph

representation that can easily be understood by the users.

Song et al.| (2009) are the first to use semantic similarities as a metric for
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clustering semantically annotated documents. The SSM they rely onis that

of Lietal] (2003) and is expressed by two factors:

simy;(c;, ;) = fi(1) - fr(h), (3.4)

where 1 is the shortest path length between ¢; and ¢, and h is the depth
of their LCA. This reminds some other SSMs presented in the first chap-
ter such as Lin’s measure (Lin, 1998). This work features one of the ideas
proposed by Hotho et al] (2003) of mapping the term vectors to all the con-
cepts they may be an instance of. For example, if the word jacuar is used
in the text, the strategy they follow is to associate it with the concepts
of the cat, the car and the guitar. Then, the semantic similarity of two
words wy, w; represented by their concepts (ciy, ..., C1n) and (Ca1, ..., Cim) T€-
spectively, is assessed as follows: simgeng(Wi,w;) = max{simu(cl, C) },
a € {c1, .., Cn}, & € {Ca1,...,Cam} and that of two documents is the av-
erage of similarities of their words. The clustering method they proposed
is quite uncommon compared to all other papers as it implements a genetic
algorithm. This kind of algorithm provides a near-optimal solution by ran-
domly searching the space of solutions using principles analogous to natu-
ral selection and heredity. They argue the drawback of such an algorithm
when applied to clustering is that it requires to set a number of clusters,

and provide a way to remove this limit.

The use of knowledge for enhancing clustering has also been successfully
tried for clustering non-text documents that have been semantically in-
dexed, e.g. genes (Liu et alJ, 2oog; Adryan and Schull, 2oog). Liu et al.

(2004) try to tackle the curse of dimensionality! encountered in some clus-

!Coined by Bellman (2003), the phrase refers to the phenomena that appear when dealing
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tering applications by proposing a novel subspace clustering technique. The
idea of the task is to find potential clusters in various subspaces, which
means that it can capture the fact that some items may belong to several
clusters, depending on the considered dimension(s). The DNA microarray
technology for example is known to be at the origin of high-dimensional
data because it produces a lot of gene expression measurements at once.
The authors focus on this use case by using the data of Spellman et al. (1998)
that provide the expression of 6,218 genes of S. cerevisiae every 10 mins during
160 mins, which represents two cell cycles. They cluster the genes based on
their expressions and show that guiding this clustering with the ontology
by pruning the search space—so thatirrelevant solutions are not explored—
greatly reduces the computation time of the algorithm while producing

results somewhat comparable in terms of cluster quality.

Finally, clustering has been applied to metadata in Maedche and Zacharias
(2002); Lula and Paliwoda-Pekosz (2008). Metadata contain instances of on-
tology concepts that are also related to each other. Let us consider the Fig-
ure R.4, Finnland is an instance of the concept CounTRry and is related to
Finnish, an instance of the concept LaNcuacke. Recall Definition | in Chap-
ter 1, there are two kinds of relationships called taxonomic (#¢) and non-
taxonomic (R). Metadata make use of all relationships to build a graph of

instances for an underlying ontology.

They developed several semantic similarity measures based on the relations
of the metadata graph to make a hierarchical clustering of the metadata.
This approach is the closest to what we aim to do. However, they rely on

a complex structure (metadata) that is rarely available because building

with high-dimensional data.
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Figure 3.4.: Metadata is a graph of instances of concepts from an ontology.
This Figure is inspired by Maedche and Zacharias (2002).

those databases is time-consuming. A still time-consuming but more fre-
quent method is to annotate a document with concepts of an ontology in-
stead of representing this document as a graph. For example, a dramatic
movie occurring in France during the World War 2 would be a document
annotated by brRaMA, FRANCE and WORLD WAR 2 instead of a graph with

” & ” &

relationships (“when”, “where”, “genre”) linking those annotations.

The papers described in this section are more or less related to what we call
semantic clustering, ontology-based clustering or ontology-driven cluster-
ing. Although itis certain that relying on an ontology helps clustering doc-
uments, few works detail how to rely solely on the document annotations

and underlying ontology. Besides, hierarchical clustering has been barely

explored when considering ontologies e.g. Maedche and Staab (2001); Bre

aux and Reed (2005) compared to other clustering methods like k-means.

Semantic similarities have been exploited in few papers (Maedche and Zach

arias, 2oo2; Song et all, 2ooq; Shehata et alJ, 2006), but they did not con-

sider the existing and numerous semantic similarities except in

(2008), which focuses on genes. Unfortunately, this work has two
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downsides. First, itis only applicable to genes, although the coreideaisac-
tually generic. It relies on GO (Gene Ontology) concepts—so it cannot load
another ontology—to cluster the genes based on the semantic similarity
of their annotations. Then, they map the clustering with the expression
data as it is meant to be used for gene clustering after a microarray anal-
ysis. Second, they rely on a basic hierarchical clustering algorithm with
classical linkage functions instead of exploring the behavior of recomput-
ing semantic similarities during the clustering (see §8.3 for more details

on this aspect).

As a result, there is no work in the literature that seeks to hierarchically
cluster documents of any type by relying on their semantic annotations

and semantic similarities.

3.3.2. SEMANTIC CLUSTER LABELING

In analysis tasks and user interfaces, clusters have to be rapidly understood
by the users. In Information Retrieval, for a query “travel to Cermany”, the
results can be presented as clusters of hotels, restaurants, sightseeing, etc.
Another common use of cluster labels is when we want to understand how
items have been gathered (Manningetall, 2008). After clustering genes by
using their expression data in a few environments for example, one may be
interested in what characterizes each group. Consequently, cluster label-
ing often follows a clustering analysis as it is an important task for cluster

analysis (Ceraci et al, 20o6).

Role and Nadif (2014) state that in most labeling approaches after text clus-

tering, labels are simply terms picked from the texts according to their fre-
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quency. The limitation of such a process is that relationships among the
words are not represented. They thus propose an approach to make a graph
representation of terms for the clusters and give the user a better under-
standing of the meaning of the clusters. First, they build a document-term
matrix as for the LSA and they use a k-means algorithm for clustering this
matrix into k clusters of documents. Second, they reduce the document-
term matrix by observing the terms that most contribute in the creation
of each cluster. Third, they build a term similarity matrix based on cosine
similarity of weighted term vectors. Then, they combine the reduced ma-
trix and the term similarity matrix to build a graph, with terms as vertices
and similarities in place of edge weights. Finally, the graph is pruned by
removing low-weight edges (and thus low-supported nodes) to keep it read-
able. The result is a graph with top elements—from the reduced matrix—
connected to each other when they are highly similar. This representation
of clusters is thus called semantic as it provides a structured summary of

the content.

As for clustering, the benefit of using external resources such as Wikipedia
has been predicted and tested (Carmel et alJ, 20oq). Authors realized that
even if the gold standard words were present in the documents of a given
cluster, they would rarely be selected to annotate this cluster. In order to
improve the results, they define for each cluster the list of best candidates
by identifying those that distinguish the cluster from the others by relying
on their previous work (Carmel etal, 2006). Instead of directly annotating
the clusters with these terms, they use an IRS based on a Wikipedia dump
and submit a query containing these terms. A list of Wikipedia articles
is returned, from which they extract metadata, that is, the title and the

categories of the article. Then, a scoring system evaluates the whole list
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of candidates—the initial list of terms and the metadata from Wikipedia—
with two metrics. One assesses the mutual information of each term with
the other candidates?. The other one scores the label by averaging the score
of the document(s) to which it is related and that are returned by the IRS.
The results show a significant improvement compared to simple term ex-

traction based on frequencies for instance.

Most of the work regarding semantic cluster labeling is related to gene
clusters. The reason is that genes are annotated with Gene Ontology con-
cepts that can thus be used for inferring labels to gene clusters. This way,
some protein-protein interactions may be inferred, as an example. Be-
sides, gene clustering is useful for researchers to understand which genes
are expressed the same way in the same conditions, for instance for a given
metabolic pathway. GOstat (Beissbarth and Speed, 2004)) proposes to anno-
tate a group of genes by finding overrepresented GO concepts among their
annotations. This approach takes the structure into account as ancestors
of concepts annotating the genes are considered to be potential labels. CO-
stat then performs a statistical analysis to pick the concepts that are over-
represented. Several other tools add slight variations to improve the per-
formances and/or quality. While COstat uses a combination of X? with
Fisher’s Exact test, Lee et al| (2005); Bauer et al] (2008) use diftferent statis-
tical models, respectively the Mann-Whitney U test and the sole Fisher’s
Exact test. Another approach puts more emphasis on scalability and con-
siders the order of the genes in the list (Reimand et al., 2007). The authors
take the example of the constitution of a list by picking a gene of interest

and adding other genes ordered by their similarity to the first one in terms

?The mutual information aims at measuring the mutual statistical dependence of two
random variables.
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of expression data. Finally, there is also some work for improving the user
experience, for example with providing new covered species (Shah and Fe-
doroff, 2004) or new visualization tools (Maere et alJ, 2oos; Paquette and

[Fokuyasu, 2o10; Mi et all, 2o10).

Although these approaches are relevant in a biological context, the way
GO concepts are picked for labeling the clusters in another context can be
discussed. Overrepresentation is one way of summarizing a set of con-
cepts by picking those that directly or indirectly appear the most. This
kind of approach, however, does not consider the specificity or generic-
ity of the labels. Especially when labeling hierarchical clusters, the speci-
ficity/genericity ratio needs to be controlled in order not to give the same
labels to successive parent nodes. Besides, the most elaborated approaches
for cluster labeling are related to GO while this task is useful to many con-
texts with various ontologies. In essence, these methods could certainly be
adapted to work with another ontology, however, the papers are often in
application notes format that do not provide implementation details and

the source code is rarely available.

Some papers introduced in §§.3.3 propose to build hierarchical clusters by
using novel (Maedche and Zacharias, 2002) or existing semantic similari-
ties (Ovaska et alJ, 2008). By doing so, they give the first insight of using
semantic similarities for clustering and annotating the nodes. When a
new node is defined in the tree, itis justified by a high semantic similarity
of its children. Semantics thus literally explain the grouping and should

be used in order to label the node.
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3.4. Motivation & positioning

The previous section shows that although a lot a work has been done in
the several aspects this chapter explores, there are currently few studies
on clustering and cluster labeling from entities annotated with concepts.
Yet this kind of task would be useful in numerous domains, for example se-
mantically annotated images could be automatically ordered in (sub)folders
that are named accordingly. While some effort has been devoted to cluster-
ing semantically annotated documents the methods lack genericity: in-
puts are genes with expression data, some others are metadata, there is

no choice of the semantic similarity or they are restricted to one ontology.

The clustering field is a wide research topic and we do not want to create
new clustering methods. However, we think that when the documents are
annotated by concepts, clustering can be thought differently, or at least
enriched as in Maedche and Zacharias (2002). To this aim, we conducted a
study on the use of semantic annotations for clustering by using semantic

similarity measures.

More importantly, we want to explore a new question: how to summarize
a set of concepts? The structure linking the concepts altogether is known,
so we may be able to find a way to reduce a set of concepts while keeping
this set accurate. Some research intented to do so by statistically selecting
overrepresented concepts in the set with consideration of their underlying
structure, but overrepresentation might not be the best property to use for

summarizing.

Such a process has a very concrete application, cluster labeling. Previous

works emphasize the fact that cluster labeling is helpful, if not mandatory,
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to understand the results of a clustering. When documents that are anno-
tated with concepts are grouped into a cluster, one can think we can use
those concepts to annotate the whole cluster, especially because the group-
ing is based upon their semantic similarity. Some concepts might be irrele-
vant for the whole group and should be removed while some others could be
generalized—poc and cAT as DoMESTIC ANIMALS for example, as suggested
by some studies that consider hypernyms (Hotho et al., 2003). Two poten-
tial problems may arise when one intuitively tries to fulfill this task. Us-
ing all the hypernyms of each concept may lead to a lengthy description
and solely using the documents’ annotations would produce a too specific
description of the clusters. Consequently, we want to propose a model that

derives from our annotating framework.

We seek to make a method that can cluster semantically annotated doc-
uments while labeling those clusters instead of having two independent
tasks. Indeed, clustering groups the items together for a reason that can
be explained at the moment they are grouped, so this information should
be used at the same time for labeling the clusters. Indeed, inconsistencies
between the clusters and their annotations may be encountered when the
two task are done independently, because the clusters would be obtained

according to different paradigms to those of the annotations.

3.5. Benefits of semantic clustering

This section focuses on our contribution to the clustering of documents by
using their semantic annotations. As for automatic annotation, the aim

here is to only use those annotations so that the final application is generic.
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3.5.1. A CONSISTENT AND ACCURATE CLUSTERING APPROACH

As explained in §§.2, the similarity metric is chosen according to the type
of data to cluster, e.g. the Levenshtein distance is often used for clustering
strings whereas n-grams approaches are favored for texts. It thus seemsin-
tuitive to rely on a semantic similarity measure as the elementary metric
to build the similarity matrix of documents annotated by concepts. We
assume that each document is annotated by one or several concepts. The
similarities of all documents needed for creating the initial matrix are com-
puted by using a groupwise semantic similarity (Harispe etall, 2o14a). The
first feature of our approach is that, when two clusters are agglomerated
into a new cluster, we recompute its similarity with every other cluster by
following the same similarity we have used for creating the matrix. While
classical methods would use an arithmetic function based on elementary
similarities such as an average, it seems to be more accurate to rely on the
same similarity function. In fact, this proposal guarantees that the whole
tree is consistent w.r.t a given SSM, and that there is no bias introduced
by averaging (or maximizing, or minimizing, etc.). This idea has already
been successfully implemented by Ranwez and Cascuel (2002) and it shows
that at a small computational cost, the quality of the clustering can be im-
proved. This feature yields the second novelty in our algorithm in the sense
that we propose the clusters as well as the labels that can describe them so
that they are easily interpretable. Thatis, when a cluster is created, it can
be annotated by using the concepts of the observations it contains and the
resulting labeling is at the basis of the similarity of the cluster with the
other ones (see Figure R.5). Note that again, as our implementation uses

the SML, it provides a great flexibility on the SSMs that can be used and a
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similar study could easily be conducted with other metrics picked among
the numerous ones proposed by the SML. In other words, the hierarchy of
clusters and their annotations are all consistent w.r.t. a given SSM, which
also implies that the quality of the labels and that of the clustering are mu-

tually important and strongly related.

Unfortunately, the studies presented in the related work section do not pro-
vide a satisfying semantic similarity-based technique for clustering seman-
tically annotated documents. They either describe a new way of computing
semantic similarities based on another kind of data (Maedche and ZachA
arias, 2oo32) or they require a too specific input (Ovaska et all, 2008). In our
adaptation, we decide to pursue with the BMA that we already used for an-
notating (see Chapter 2) as it—or a close variant—has already been used in
previous studies for this task as well (Ovaska etal., 2008; Songetal., 2009).
As we do not have any pre-requisite about the behaviour of the clustering
method, a composite average seems to be appropriate. Depending on the
needs of the application, the choice of the pairwise similarity can vary. For
our tests, we use the Lin similarity (Lin, 1998) with Seco’s IC (Seco et alJ,
2004)) that are both common in the literature and quite neutral, i.e. they
donot aim to fulfill any particular requirement (see §i.3.2.4). Besides, this
combination has been proved to be relevant regarding the results obtained

in the previous chapter.

3.5.2. LABELING THE CLUSTERS

We still need to define the set of concepts that is used for representing/anno-
tating a given cluster. As for annotating a document, this requires the defi-
nition of a selection strategy based on a model of the objective. This section

presents the choices we made and the justification for them.
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Figure 3.5.: HAC adapted to semantically annotated documents. First all
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singleton clusters are associated with the annotations of the
documents they represent, called their labels. Then a similar-
ity matrix is computed upon the semantic similarities of la-
bels of clusters. Itis used to find the closest clusters that (here
Cl;, Cl,), when agglomerated, lead to the creation of a new clus-
ter Cls which label Ls needs to be calculated. Once thisis done,
Clsisadded in the matrix and corresponding semantic similar-
ities are calculated.
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3.5.2.1. Summarizing versus merging

Let us first expose an example by denoting Cl;, Cl, two singleton clusters
(representing one documenteach), respectively Cl; = {d;}, Cl, = {d,}. Those
documents are annotated by A; and A,, two sets of concepts. This is a very
early step of the clustering since each cluster represents only one docu-
ment. Therefore, the labels of Cl;, Cl, simply are L; = A;,L, = A,, respec-
tively. Say Clis a new cluster such that Cl1 = {Cl;,Cl,}. We need to define

the labels L that characterize Cl.

One very intuitive solution is to merge the labels of Cl; and Cl,. That is,
Lo = LUL,. Asbriefly introduced in the Motivation section of this chapter,
this solution may be problematic both for the labeling and for the result-
ing clustering. When merging the labels, the number of concepts will in-
crease quite fast while clusters are agglomerated. As a result, the top level
clusters—the ones close to the root of the resulting tree—may be hardly in-
terpretable for the user. Some concepts are very specific to one document
and thus should not be propagated to clusters of higher levels. This can
also affect the clustering by adding up some noise because as stated in the
previous section, the quality of labels may impact that of the clusters and
vice versa. Besides, such a strategy ignores the weights of concepts in the
agglomerated clusters. That is, if one concept is more represented than
the others, it would be wrongly considered as the others. A more appropri-
ate process would be that as the clustering is agglomerating, the labels get
more and more generic because the clusters themselves are getting more
abstract. Finally, in a basic merging approach, the commonality of labels
of the grouped clusters is not taken into account while it should be regard-

ing the fact that labels are concepts from an ontology. Redundancy due to
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the commonality may thus be avoided by leveraging the structure of the

underlying ontology.

A promising alternative is to summarize the labels. Every time a cluster
is created, its labels should be computed according to the two clusters it
contains. There are some objectives that can be expected for such an inter-

pretable summary:

« it has to accurately reflect the content of the cluster, i.e. reflect the

commonality of the documents belonging to this cluster;

« it must be as specific as possible while proposing some more abstract

concepts sometimes;

« it must contain a limited number of concepts.

3.5.2.2. Modeling the objectives

Those objectives remind of the ones we defined for annotating documents.
The concision objective has the same goal, that is being easily understand-
able by a human. Consistency is obvious as the labels should accurately
represent the clusters. The main difference regards the specificity of the la-
bels. When annotating documents, we aim at selecting the most specific
concepts. Here with clusters, we want to be able to generalize sometimes.
For example, if a cluster contains documents related to caT, DoG, RABBIT
and HUMAN, it would be accurate and easier for the user to label it MAM-
maLs. The loss of information must be minimized during this process so

that the generalization is controlled: animAL would be too generic.

The process for labeling a cluster is designed the same way as for annotat-
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ing a document. That is, we define a search space Ly, a neighborhood—
here, the neighbors are the clusters that have been grouped—and we look

for an optimum L* that maximizes an objective function g(L)

L* = argmax {g(L)}. (3.5)

The same greedy algorithm as the one presented in Algorithm [l can be ap-
plied as it relies on the same type of input. The same process, i.e. itera-
tively removing concepts from L, seems legitimate too. Only the calculus

of the value of the objective function g(L) is different.

Let us denote Cl the cluster to annotate containing two clusters, i.e. Cl =
{Cl;, Cl,}. The clusters Cl;, Cl, are already labeled—with L;, L, respectively—
since we chose a bottom-up algorithm. We define L, as a temporary set of
concepts containing all concepts in Ly, L,, so L, = L; U L,. The search space
L, is based on L, but has to be enriched with novel concepts so that more

generic concepts may be proposed in the final labeling:

Ly = U anc(c), (3.6)

where anc(c) is the set of all ancestors of the concept c and c itself. L, still
reduces a lot the search space compared to the whole ontology by limiting
it to the concepts already present in the documents and their ancestors.
While we questioned the necessity of enriching A, with the ancestors in
the last chapter, here it is more appropriate. There is a key difference in
terms of intention between the annotation process of the previous chap-
ter and the labeling of clusters. Here, the aim is to summarize, factorize,

generalize a set of concepts into a smaller one while keeping it meaningful.
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To this end, the introduction of concepts of higher abstraction should be

encouraged.

The objective function f(A) for annotating documents in Chapter 2 (see §p.4.3)
was expressed as an objective and a constraint. g(L) must be somewhat
similar as it relies on the same foundations. In an HAC context, the neigh-
bors of the node to label are in fact its two children that have been agglom-

erated. Asaresult, the adapted consistency objective is

1 1
consistency(L) = Esimg(L, L)+ Esimg(L, L,). (3.7)

The penalty for keeping the list of concepts concise is also adapted as

penalty.(L) = p[L|. (3.8)

Finally, there is the objective regarding the global specificity of the set. It
can be modeled as another constraint to add so that the final objective func-
tion g(L) has a better control over the specificity & genericity of the output.

We define it as the average specificity of L:

penalty, (L) — ﬁ S 1c(0). 3.9)

cel

This means that the more the concepts in L are specific, the more penalty,
increases. Therefore, when L is pruned, concepts can be removed for two

reasons:
« Lis not similar enough to the labels of the inner clusters,

« Listoo specific and it increases substantially the average specificity.
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The final objective function is the consistency objective under the two con-

straints defined above, that is

g(L) = consistency(L) — penalty (L) * penaltyg(L), (3.10)
1 .
g(l) = 5 Z simg(L,L;) — ZIC(C). (3.11)
Lie{li,Lo} ceL

The two penalties are not summed but multiplied since we are looking for
a label that is concise because it is generic. They should thus not be inde-
pendent from each other. The expected behaviour of this function is the
following. If a concept in Lis novel, it may or may not be removed depend-
ing on the result of the trade off of genericity/similarity. If it is very ab-
stract, penaltyg(L) will decrease. However, consistency(L) will decrease as
well as it will not be very similar to the concepts labeling the inner clusters.
On the other hand, a concept that is very specific will have to be well rep-
resented in the inner clusters for being kept in L. Again, this trade off is
balanced by p. With a high value of i, the labels will tend to be systemat-
ically abstract while with a low value, they will remain the same as those

of the inner clusters.

3.6. Algorithm and the study of complexity

As we want to provide a scalable method, we need to study its feasibility,
particularly by inspecting its time complexity. We do not aim at ameliorat-
ing the HAC complexity in any way, since the aim is to explore the possi-
bility of using semantic annotations of documents. Nevertheless, we need

to make sure our approach has a comparable complexity. To this aim, this
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section details the algorithm we rely on and its complexity.

3.6.1. ALGORITHM DETAILS

The algorithm is a greedy algorithm leading to a binary tree inspired by the
very common Neighbor-Joining method in systematic biology (Saitou and
Nei, 1987). Algorithm [ details the whole process. During the initializa-
tion, the first clusters and the tree are created: each clusterisaleaf and its
label is the annotation of the document it represents (1.5-9). The similar-
ity matrix of trivial clusters is computed by using semantic similarities of
their cluster labels (1.10-15). Then, the agglomerative process begins and
iterates until there is only one cluster. Each iteration consists in finding
the pair of the closest clusters Cly, Cl, in the matrix (1.18). A new cluster
Clpew is created (1.19). In order to label the newly created cluster we can rely
on the algorithm defined in the last chapter as only the objective function
changes without introducing or removing parameters. We thus need to de-
fine the cluster’sneighborhood. In thiscase, itis thelist of its two children
(1.20). This new cluster is then labeled by using the objective function de-
fined in §§.5.2.9 (1.21). We also approximate and store the distance of this
cluster to its children by computing the semantic similarity of their labels
(1.22-23). This step allows us to build a tree with branch lengths represent-
ing the semantic similarities between the nodes. Note that the following
equations assume that the SSM is bounded in an interval [0;1], as most

SSMs are (Harispe et all, po1sh):

d(Clp, Cly) = 1 — simg(Cly, Cly), d(Cly, Cly) = 1 — simg(Cly, Cly).  (3.12)
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Finally, the similarity matrix must be updated. The new cluster is added
to it and all the similarities with other clusters are computed. The rows

and columns corresponding to the two agglomerated clusters are removed

(1.24-29).

3.6.2. COMPLEXITY ANALYSIS

In order not to be redundant, the complexity analysis refers to some no-
tions explained in Chapter 2. The algorithm P features Sp,x € N as an
input that aims at bounding the maximal size of labels associated to the
clusters. In practice, Spax has been set to 20 in the experiments detailed in
sB.9. This is subject to variations depending on the dataset because if docu-
ments are heavily annotated, Smax should be higher, although a document
is more likely to be annotated by ten to twenty concepts in general. It is
used as a parameter of Annotate(-) in place of the th input parameter. Note
that the first lines of the algorithm guarantee that there is no inconsis-
tency between D and Sp.x. Let us detail the few steps preceding the actual
clustering of the documents. Creation of initial clusters (1.5-9) is in O(|D]).
Filling the matrix requires to fill O(|D|?) cells, each of which is computed

in O(S3

2 ax) for the BMA composite average. Initialization of the algorithm

(1.2-15) is thus made in

O(|D|*S% .y )- (3.13)

The clustering process consists of |D|—1iterations during which three main
processes occur. At each iteration, the matrix is browsed once to find the

best cluster pair (1.18) in O(z?) where z is the current number of clusters.
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Algorithm 2: Clustering and labeling of a set D of documents

1 Function Cluster (D, L, Spax, 0)
Input :The set of documents to cluster D, a real number p € [0;1],
the maximum size of cluster labels Sy, an ontology 6
Output : The root node root of the tree
2 if One annotation sizeis greater than Spa, then
| print an error and exit;
end
clusters < {};
fori<« 1to|D|do
Create a childless cluster Cl; with labels L; = A;;
clusters U {Cl;};
end
10 | Create a matrix M of size 2|D| x 2|D|;
u | fori<+ 1to|D|do

© N S n W

12 forj < i+1to|D|do

13 | M(1,j) « simg(Li, Lj);
14 end

15 | end

16 | new « |D|+1;
7 | while |clusters| > 1do

18 Find the pair of remaining clusters Cli, Cl, with the highest
similarity;

19 Create a new cluster Clyeyw;

20 Create a list K «— {Cly, Cly};

2 Create Lpew < Annotate(K, [, Smax, 0) the labeling of Clyew;

22 Add child Cl, to Clyew with a distance of 1 — simg(Clpew, Cly);

23 Add child Cl, to Clyew with a distance of 1 — simg(Clpew, Cly);

24 clusters < clusters U {Clyew};

25 clusters < clusters \ {Cl, Cl,};

26 for Cl; in clusters do

27 i + index of Cl; in M;

28 M(i, new) < simg(L;, Lnew);

29 end

30 new < new + 1;

31 end

32 | root < cluster|l];
33 | returnroot
34 end
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The label of the cluster is then computed by using a modified version of the
annotating algorithm for which the complexity is O(knS,,,, + n?) accord-
ing to equation (2.18); where k was the number of neighbors taken into
account, n was the size of the initial set Ay and S4_,, was the maximum
size of annotation. For cluster labeling, the neighbors are the children of
the new node so this value is constant (k = 2) and is removed from the
complexity. Sq,.., the maximum size of a document annotation, is hereby
replaced by Spayx. Theinitial set for labeling a cluster, denoted L, should be
calculated following equation §.d. However, in order to control the scala-
bility of the algorithm, we introduce a hypernymy parameter h that limits
the search among ancestors. That is, anc(c, h) are the h direct ancestors of
concept c. As aresult, the search space Ly isin O(hSpax). The adapted com-
plexity is thus O(2(hSmax)Smax + (WSmax)?) = O(h’S? ,,). The third and last
important task is the computation of new semantic similarities with the

(z — 1) other clusters in O(zS}

2 ax)- Consequently, the complexity of each

iteration in the while loop is a browsing of the matrix, a labeling of the
new cluster and the computation of new similarities, leading to an overall

complexity of each while iteration (1.18-29) of

O(2* + 1S]p + ZShnax)- (3.14)

The complexity of all iterations of the while loop, which dominates the one
of the initialization and thus the time complexity of the whole algorithm,

is hence:
D]

O Z (ZZ + hssfnax + Zsfnax)
— (3.15)

= O (D] + |D|R’S}, . + IDI*Shay) -

max max

135



CHAPTER 3 % Semantic clustering and cluster labeling

As complexity is particularly crucial for large datasets, i.e. large |D| and
|C|, Smax can safely be considered smaller than |D| leading to

O(|ID? + |D|R’S] ., ). (3.16)

max

We also investigated another heavier but potentially more accurate appro-
ach for clustering documents. Instead of labeling a new node by consid-
ering its two children as neighbors, we propose an alternative for which
the set of neighbors is the set of all documents contained in this new clus-
ter. Indeed, when a new node is labeled, there is a chance that some bias
or noise is introduced by our heuristic. As a result, high-level nodes may
suffer from accumulated imprecision that would decrease annotation ac-
curacy, hence impacting the clustering quality. Using all observations for
annotating the node is a solution to make sure that full evidence is taken
into account when labeling nodes. Let us study the complexity of such an
approach by using the one previously detailed. The only difference is the
definition of L,. It now also depends on the maximal size of the new cluster
which increases by 1 at each iteration of the while loop, that is, the search
space Lo is in O(zhSmax). The adaptation of the labeling complexity is thus
(zhS2 ., + (zhSmax)?) = O((zhSmayx)?) instead of h3S? .. When plugged into

to the equation .14, this results to an iteration complexity in

O (zz + (zhSmax)® + zsfnax> =0 ((zhsmax)3> (3.17)
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and the complexity of the whole algorithm is

D]

O [ Y ((z0Smar)’)

z=1 (3.18)
= O (|ID[*B’S} ) -

From now on, the first approach is denoted by Light Semantic Clustering,
or Lsc, and the second one is referred to as Heavy Semantic Clustering, or
HsC. While Lsc has a time complexity rather similar to that of classical ap-
proaches (typically, O(|D|?)), HsC is one order above. However our approach
here is exploratory as it mainly aims to identify the gains and losses of re-
lying on semantic similarities combined with automatic labeling. In fact,
if HSC turns out to be the most accurate approach, then it can easily be opti-
mized to get a reasonable time complexity. Here are several optimization

hints to this end.

1. Using the values computed in previous iterations.
As for the previous chapter, some calculations are needlessly repeated.
Since the algorithm follows an agglomerative strategy, some compu-
tations can be stored, reused, and updated only when needed (recall

the SumMaxCols and SumMaxRows).

2. Sampling the neighbors.
We can also consider to only take a sample of fixed size k of the ob-
servations contained in the node to annotate it. This would give a

complexity similar to that of Lsc while approximating HscC.

3. Building L, differently.
The high complexity of HsC is due to the definition of L,, particularly
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because it merges all annotations of the observations in the node to
be labeled. However, another way to proceed is to define L, as in
Lsc, that is by taking the union of the labels of the two children of
the node. The objective function would still consider all documents
within the cluster as neighbors, but the dimensionality of the search

space would be greatly reduced.

We are thus convinced that the high complexity of HsC can be reduced. Be-
fore studying its behaviour comparatively with Lsc and a classical HAC me-
thod, let us explain an important post-processing aspect of the output tree

and detail the evaluation benchmark.

3.7. Post-processing

The algorithm per se produces a binary tree which is difficultly exploitable
by a user. Crouping the clusters by pairs is legitimate for the algorithm
complexity, however, a user would expect larger categories to appear in-
stead of a dense binary tree. Figure §.d shows the problem. The picture in
(a) is an example of output of such an algorithm. As the distance of each
node of the tree to its children is computed, it makes it possible to repre-
sent branches with various lengths. This would help the user to intuitively

identify the groups of clusters that may make sense (b).

A post-processing can automate the cluster definition instead of leaving
this task to the user. The post-processing algorithm consists in flattening
the tree in certain areas in order to provide a tree as in (c). The distribu-

tion of distances in a tree is often bimodal with a peak for low values—
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[

Figure 3.6.: With no branch length (a), itis hard to visually determine the
most meaningful clusters. When branch lengths are taken
into account (b), clusters clearly appear. The post-processing
algorithm we propose produces a tree such as (c) so that the
most meaningful clusters are automatically determined.

representing intra-cluster distances—and another peak for high distances—

representing inter-cluster distances (see Figure B.7).

Clusters should be flattened in areas containing extreme values in those
peaks. It seems obvious for the low distance areas: when nodes are close
to each other, they are merged. However, it is a little trickier for the op-
posite, that is, when nodes are extremely distant. In fact, despite the fact
that some clusters are very different from each other, they were closest in
the matrix at some point and they have been gathered. Therefore, they
share a common parent. This situation occurs mostly near the root. For
example, consider Figure .8, a tree with two children at the root. The
first child is labeled cooking, the other one is labeled {coMPUTER SCIENCE,
TRAVEL}. INn {COMPUTER SCIENCE, TRAVEL}, there are two clusters, cOMPUTER
SCIENCE and TRAVEL. During the last iterations of the algorithm, the clus-
ters labeled coMPUTER scIENCE (cs) and TRAVEL where the closest. This does
not mean they are close—besides, the labels of their parent are confusing—
, and it seems more appropriate to have three clusters at the root, such
as COOKING, COMPUTER SCIENCE and TRAVEL. All of them should be on the

same level as they all are major topics. We thus alter the tree to remove
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Figure 3.7.: Example of a distribution of distances in a clustering tree from
the benchmark dataset (see §3.8) with the representation of
the a, B quantiles.
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ROOT ROOT
COOKING CS,TRAVEL COOKING TRAVEL

Figure 3.8.: The limitation of relying on an agglomerative algorithm. cs =
computer science. The tree obtained on the left is the result of
an agglomerative process were the cs and TRAVEL clusters have
been gathered although they are very distant (branch lengths
are notshown). Instead, the tree on therightis preferable and
requires to flatten the tree by removing the {cs,TrRavEL} clus-
ter.

the nodes (here {coMmPUTER scIENCE, TRAVEL}) for which children (here com-
PUTER SCIENCE and TRAVEL) and parent (here rooT) are very different as well.
Another reason for flattening is the similarity of cluster labels. Indeed,
when two nested clusters have the same labels, the algorithm merges the
lower cluster content into the top one. This specific case occurs on two lev-

els while the previously explained one works on three levels.

The algorithm that does this task is pretty straightforward. First, we need
to find the threshold values for which distances may lead to a flattening.
As the distribution of distances may vary depending on the dataset and the
tree, we define two quantiles «, B. Their definition is based on a training
set (see §B.8.2.3). For example, with the training set of the benchmark pro-
posed further (see §§.8), best results are obtained with a = 0.2and B = 0.87.
Second, we define two threshold values thy, thy, for the low and high val-
ues below or above which distances will be considered during the flatten-
ing. A recursive function browses the tree with a top-down strategy. For

each node it browses, if its parent and its children all have low or high dis-
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tances with it, then it branches the children nodes to the parent node and
removes the current node. Finally, the algorithm stops when it reaches
the leaves and returns the processed tree. Figure 3.9 shows parts of a tree
before and after this process. We see that some inconsistencies seem to re-
main in the tree because some items are outliers and cannot be clustered

correctly.

3.8. Creation of a benchmark

To the best of our knowledge, there is no work that focuses on clustering
semantically annotated documents. In fact, the papers presented in the
Related Work section do not make any comparison with other approaches
on the basis of a common dataset and metrics. We can only identify the
novelties proposed by each method without clues as to their comparative
performances. Besides, the specificity of each method makes it even more
difficult to compare them, as many of them rely on texts with only a few
relying on other documents such as annotated genes. As we definitely
want to test our approach, we thought about developing a benchmark and
comparing several methods, including ours, on this benchmark. Unfor-
tunately, the source code of state-of-the-art approaches is rarely available
and often also ontology-specific. Asaresult, we propose a benchmark built
upon previous bookmark annotations, curation and semantification with
WordNet. Hopefully, this will provide a useful dataset for comparing clus-

tering methods.
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Figure 3.9.: Different parts of a tree before and after the post-processing.
Folder icons represent clusters and file icons represent docu-
ments. The text associated with each document is its seman-

tic annotation.
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3.8.1. ORIGINAL DATA

Finding relevant datasets for evaluating those approaches turned out to be
avery hard task. There are many textual collections used for benchmarking
clustering (Rossi et alJ, 2013) and some papers that evaluate cluster labels
(Role and Nadif,, 2o14; Carmel et all, 20og). In many cases, the informa-
tion available on the documents to cluster is only their content. The same
problem occurs regarding labeling, for which the textis used to extract the
labels of a given cluster. On the other hand, increasingly more documents
tend to be semantically annotated. The most obvious ones are the biomed-
ical papers for which the annotation has been the main topic of Chapter
2. Evaluating the results of a clustering of biomedical papers would how-
ever demand a very high expertise that we do not have in the team. Such

results would hence be barely interpretable.

Wetzker etal.(2008) highlighted the fact that social bookmarking may lead
to very interesting sources of information. They also stress that it can be
subject to spam and propose some guidelines to make sure that the crawled
data are not biased by this spam. They created a corpus from a dump of
del.icio.us that associates users to the bookmarks they created and their
annotations. An Italian team (Andrews et all, po11) followed with this
study by proposing a semantic version of a subset of this corpus. The main
difference is that all annotations of the bookmarks have been mapped to
WordNet, instead of simply being words. This work has been done by hand,

providing a high quality corpus at the cost of a limited size.

A real use case application can, however, be designed. Say a user wants

toreorder his/her bookmarks. Those bookmarks are annotated by concepts
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from WordNet 3.0. Here, the annotation has been made by hand, but one
can imagine an automatic concept extraction from the bookmarked web-
site. The clustering approach we propose can create a tree representing the
bookmarks of the users with their respective category names. Such an ap-
plication makes sense to anyone and creating a benchmark based on this

dataset seems to be much easier than on biomedical papers.

In order to create the evaluation benchmark, we had to curate the seman-
tified del icio.us dataset. This dataset originally contains 739 URLs—we
will refer to them as bookmarks from now on, although a bookmark is gen-
erally associated with a user. Those bookmarks are not directly annotated
with WordNet URIs so we had to automatically map them from Knowdive,
a dataset provided by the authors, to WordNet 3.0 by using the specified
closeMatch relationship. Since some annotations did not have any close
match in WordNet 3.0, we manually reviewed the URLs encoutering this
problem. To thatend, some bookmarks had to be removed because we were
unable to match some of their concepts manually. The rest (591 bookmarks)
have been used to create the benchmark, consisting of 8 subsets of about
74 bookmarks each. One of them is a training set that should be used for
configuring the method. The seven others are evaluation sets that will be

used to score the results.

3.8.2. OBTAINING EXPERT DATA

The use case of the benchmark is pretty easy to understand and anyone
with a bit of experience with the Internet should be able to cluster and label
a set of bookmarks. Therefore, we created a tool easing those tasks and

called for participation in this project.
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218110 tsoprons | soware | rooves ]

Figure 3.10.: Example of a bookmark identified by its ID 218110 and anno-
tated by three concepts. The signature on the right gives a
simpler representation.

3.8.2.1. Interface details

Tool: http://clustering.creatox.com

Documentation: http://clustering.creatox.com/documentation.html

The purpose of the tool is basically to propose annotated and anonymized
bookmarks to the user and ask him/her to classify them. The first screen
is a login access so that any volunteer can create a new project or load an

existing one. Then, the main page of the project is displayed.

The tool proposes a bookmark as an identifier and a set of concepts from
WordNet. There is also the signature of the bookmark, which is a visual
representation of the concepts that annotate this bookmark created as fol-
lows. For each dataset, a matrix containing the similarities of all concepts
annotating the bookmarks is computed. It is then used for a multidimen-
sional scaling analysis that outputs a projection, maximizing the distribu-
tion of the concepts in one dimension. The coordinates are used to find a
corresponding color by converting them in wavelength and then colors. Fi-
nally, for each presented bookmark, a rectangle shows the list of concepts
by colored vertical lines (see an example with Figure R-1d). Intuitively, one
can quickly understand the color associated to any big topic of the dataset—
e.g. COOKING is red or COMPUTER SCIENCE is blue. It also helps to make sure
there is no inconsistency in the clusters. If a signature is very different

from the other ones in a cluster, the user should wonder if it is well placed.
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It is possible to create clusters, delete them and put them into other clus-
ters. Everything is based on drag and drop gestures. There are several rep-
resentations of the clusters as illustrated in Figure §.13: (a) hierarchical, as
a tree without the bookmarks, (b) pseudo hierarchical, with in each cluster
the frequency of concepts and the list of inner clusters and (c) flat, with the
list of bookmarks in each cluster. Each representation has it own benefits.
(a) gives a nice overview, (b)allows to quickly identify the main concepts in
each cluster and (c) allows the user to check for mistakes, inconsistencies
or potential refinement. Since all signatures are aligned, it is very easy to
identify them, as showed in Figure §.13. On the left side, a single cluster
named “education” is displayed. It appears that some items in this cluster
share something else in their signatures, that corresponds to “academy”,
“university”, “administration”, “school”, “institute”. The interface only
highlights these facts according to their semantic similarity and the user
can chose to split this cluster into two, namely “education” and “organi-
zation”. The latter would certainly be included in the former as nearly all

documents of these clusters refer to “education” or something close.

When a cluster is created, the tool asks for a name. It should be something
that makes sense to the user at first. When the clustering is completed,
that is, when all bookmarks are ordered in clusters and clusters are hierar-
chically arranged, the tool requires to semantify the labels of the clusters.
For each cluster, one can look for corresponding concepts in WordNet and
pick concepts for labeling it. This task is helped by an autocompletion tool.
The user simply has to type the beginning of the concept he/she would like
to enter and a list of corresponding concepts from WordNet is proposed.
This avoids asking the users to search on WordNet by themselves. Once

this is done, a small survey asks the user several questions about her expe-
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rience with the tool. This includes:

how long it took to complete the project,

how confident she is with the clustering,

how confident she is with the labels,

how easy or difficult is was to use the tool.

3.8.2.2. Benchmark

12 people answered the call for participation. Some are lecturers (5) or PhD
students (3) from the école des mines d’Alés. Several students (4) were also
willing to participate. None of them had any knowledge of the content of

the dataset prior to participation.

Let us first study their feedback on the process (see Figure §.13) leading to
19 trees overall. The average confidence in their clustering is 62.1%. This
proves that the task is not easy because the items are hard to classify. Users
are slightly more confident with their labels (65.9%), some mentioned that
finding the accurate concepts in WordNet might be difficult. The other rea-
son for this score is that it may be difficult to give labels to high-level clus-
ters that aggregate groups of various topics. Most of the trees (63.2%) were
completed in 30 to 60 minutes. It took between 1 and 3 hours for some oth-
ers (31.6%) and 3 to 5 hours for the rest (5.3%). The average user-friendliness
grade users gave to the tool is 76.7%. This score is quite good but it also
shows that some things could probably still be improved. For example, the
clusters take a lot of space and users have complained about the need to

scroll frequently to access the element they want.
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Figure 3.12.: The bookmark signatures helps in identifying new clusters. On the left, the user created a sin-
gle cluster related to “education”. It appears that some bookmarks share something apart from
“education” and these could be classified in another cluster labeled “organization” (right side),
certainly embedded in “education”.
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Figure 3.13.: Users feedback on their experience using the clustering inter-

face.
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For each dataset, we thus have several clusters and labelings. All datasets
have been processed by one-participation and multiple-participation tes-
ters. Therefore, every dataset benefits from a point of view similar to some
others and from unique insights provided by one-shot testers. The trees

have a depth of 4 at most and contain 20 clusters in average.

For evaluating the clusters, we propose to compute the average distance
of the computed tree from the expert trees. Precision and recall of clus-
ters also seem obsolete for this task as we aim at evaluating the whole tree
structure—and not only the clusters for a given cut-off. Some tree distance
algorithms have been elaborated in the literature and we use one of them
to calculate how different a pair of trees is. As a result, for each dataset,
we suggest to compute the standard deviation of expert data, provided that
there are about three expert opinions per dataset. If the tree that our algo-
rithm outputs is on average as different from the expert ones as the expert
trees are from each other, this means that our method has an efficiency

comparable to a human for this task—under the same conditions.

Labels can be evaluated following a more classical method. Here, an F-
measure is applicable to score them, although using a semantic similarity
would be more appropriate for the same reasons given in §p.2.3.3. As the
labels depend on the clustering and vice versa, in order to evaluate the la-
beling, we must label the expert trees in order to see whether or not those

labels are appropriate.
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3.9. Evaluation of clustering and labeling

3.9.1. RESULTS OF CLUSTERING

The benchmark data has been created by using CompPhy, an online plat-
form that proposes many tools for manipulating trees (Fiorini et all, 2o14a).
It is designed for phylogenetic projects at first but it can well handle any
kind of tree aslong as the formatis respected. Overall, the benchmark com-
prises eight datasets, one of which is meant to be used for tuning the meth-
ods while the others are supposed to be used solely for evaluation. This
way, the optimization/tuning of the technique is not made on the evalu-
ation datasets but on an independent learning set. Regarding the evalua-
tion metric, the trees can be compared using the Robinson-Foulds distance
(Robinson and Foulds, 1981) that calculates the topological differences of
two (non-)binary trees. The output is not normalized and represents the
number of basic operations needed to transform a tree into the other one.
In order to normalize it, we use the statement in Pattengale et al. (2007)
that an unrooted tree of n leaves induces at most 2n — 3 clusters. As all
datasets have a variable number of documents, the similarity of two trees
t;, t; is thus estimated as TreeSim(t, t,) = %, where simgg(ty, t5)
is the Robinson-Foulds distance of t;, t, and len(tl) = len(t,) is the number

of leaves (documents) in the trees.

Let us evaluate our approaches called Light Semantic Clustering (LSC) and
Heavy Semantic Clustering (HsC). First, Table 5.3 summarizes the average
distance among expert trees (expert) and the average distance of Lsc and

HsC trees with the expert ones for each dataset. It clearly appears that Hsc

153



CHAPTER 3 % Semantic clustering and cluster labeling

outperforms LsC on all datasets.

D1 D2 D3 D4 D5 D6 D7
expert 0.138 0.156 0.168 0.197 0.159 0.131 0.166
HSC 0.131 0.202 0.189 0.195 0.231 0.190 0.193
LSC 0.255 0.271 0.257 0.257 0.259 0.293 0.276

Table 3.2.: The average distance of expert trees from each other and of Hsc
and Lsc (after the post-processing) from the expert trees for each
dataset (D1...D7).

We conducted a more thorough study on the behaviours of Lsc, Hsc and a
classical HAC clustering—that we further refer to as the baseline—based
on semantic similarities. The baseline is built upon a semantic similarity
matrix (the same that we use in our algorithm) but uses the average link-
age criterion afterwards instead of the semantic similarity between node
labels. Three strategies are explored in the post-processing: without flat-
tening (none), with a flattening of small branches only (half) and with a
full flattening (full). By default, the baseline approach provides a cluster
tree without branch length or cluster labels. In order to correctly assess the
benefit of the post-processing for baseline, its clusters are thus annotated
using the same labeling strategies as Hsc, that is, based on all contained
documents. Figure illustrates the results obtained with the two meth-
ods, following the three strategies, on the seven datasets. It also shows

the standard deviation of expert data to ease the comparison.

The results show that the flattening is an important process for all approa-
ches and that the full process (i.e. merging both short and long branches)
outputs a better tree. Note that merging close nodes (half versus none) gives
a better improvement than that of merging distant ones (full versus half).

With no post-processing, all methods are quite comparable. When close
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Figure 3.14.: Comparison of semantic clustering (HsC and Lsc) with the clas-
sical approach (baseline) combined with the three strategies
none, half and full. Expert standard deviation expert is also
displayed. Lower values are better.
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Figure 3.15.: Comparison of the semantic clustering (Hsc and Lsc) with the
classical HAC (baseline) processing timesona2.9Ghzand 8GB
of RAM machine. Lower values are better.

nodes are merged, HsC performs slightly better than the classical approach
on some datasets and LSC is not as good as these two. When the full post-
processing is applied, HsC systematically performs better than baseline—
here again, Lsc provides less good clusters. In fact, the results of HsC are
very close to the standard deviation that represents the experts’ discrepan-
cies. On two datasets (1and 4), the trees provided by HsC present the same

distance to the expert ones, consistent with the standard deviation.

The computation time difference between the approaches is very variable
as shown in Figure B.15. All algorithms include the post-processing and
the automatic labeling of the clusters based on all documents within the
clusters. The computation times have been obtained by running the algo-
rithm 100 times for each dataset and for each method. As expected, base-

lineis faster than HsC. Interestingly, LSC is even faster than baseline. This
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is due to the fact that the baseline approach has not been optimized either
and the computation of the average link criterion takes time at each new
cluster. Normally, the execution time of this approach should be similar

or smaller than that of Lsc.

Overall, a few conclusions can be drawn from these results. HsC outputs
better trees than Lsc and baseline by producing better cluster labels at the
cost of a higher complexity. However, we are confident that an interme-
diate variant can be designed to be almost as fast as LSC and as accurate
as HsC. We are currently exploring various leads including algorithmic op-
timization of HsC detailed in §R.6.2 or a variant of Lsc that takes the two
cluster sizes into account during the new cluster labeling. We are hence
confident that we will soon be able to propose an approach that would out-
put nice results while being more scalable. Now that clustering has been

evaluated on a few criteria, let us study the results of the labeling part.

3.9.2. RESULTS OF LABELING

Unfortunately, it is impossible to simultaneously evaluate the clusters a-
long with their labels. Indeed, the experts provide different trees with dif-
ferent labels that can thus not be summarized in a gold standard labeled
tree for each dataset. Cluster labels are thus evaluated as follows. An ex-
pert tree is input in accordance with our method and the part that is sup-
posed to annotate each node is run. The result of such an approach is a
label for each node of each expert tree for each dataset. The evaluation
of labels follows our previous work proposal (Fiorini et alJ, 20150), in tune
with other studies that suggested that semantic similarities better assess

the quality of a semantic annotation (Névéol et al, 2006). For each expert
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tree, we thus compute the average semantic similarity of our labels with
the expert ones. Then, the scores for the trees are averaged for each dataset.

Consequently, we propose a label score for each dataset.

Asexplained in the previous sections, it is difficult to compare our approach
with other studies because of the lack of availability or because these ap-
proaches are too specific. We propose to evaluate our approach CL against
two baselines that are intuitive alternatives for labeling the clusters. The
first proposal merge consists in simply taking the union of all concepts an-
notating the documents within the cluster. In other words, merge is L,
withoutinclusion of the ancestors and without execution of the algorithm.
flat, on the other hand, executes the labeling algorithm on the same set
as merge, that is without including the ancestors. Finally, cL executes the
algorithm on L, as defined in the algorithm details, i.e. considering the
ancestors of each concept annotating the documents within the cluster.

Results are proposed in Figure B.16.

At first glance, the scores seem to be pretty close. In fact, it mostly de-
pends on the datasets. The worst scores are obtained with dataset 2 for all
methods. cL and merge perform alike and better than flat on this dataset.
Overall, cL gives better results although it is surpassed by flat for Dataset
6. While merge is a naive approach that agglomerates all annotations of the
documents in the cluster, cL and flat both are based on on USI algorithm,
which is a more elaborated method. Consequently, these two approaches
provide the best labels, but we note that the inclusion of the ancestors in
our algorithm leads to better scores except for dataset 6. On average, the
semantic score of CLis 0.49 and that of flatis 0.48. The difference between

them is thus small but this result proves that using the hypernyms still im-
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ter.
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proves the quality of the labels in some cases like cluster labeling. Figure
illustrates the label sizes for each method. The merge approach con-
tains many more concepts than the two others as it does not process them.
The sizes of labels for cL and flat compared to that of merge demonstrate
that we can clearly summarize 10 to 15 concepts into 2 concepts on average
without decreasing the quality of the labels—in fact, it even increases it.
Note that even when considering ancestors, the final size does not change

much.

We observe that the scores in general are less good than for document an-
notation, for example, where we usually get semantic scores around 0.8.
The reason here is that there are outliers in each dataset that are hardly
clusterable because their annotation is vague or has nothing in common
with other documents. Some experts gather these outliers in a cluster la-
beled various, some others strive to find them a category. With the former
strategy, our algorithm cannot predict this cognitive strategy and fails at
labeling the cluster. In the latter, the result is the same because usually,
once the expert has put the outlier in a cluster, he/she ignores it to anno-
tate the cluster. When our algorithm annotates a cluster it can possibly ig-
nore outliers when they are really underrepresented—because there must
be enough leaves to veil them. When outliers are removed from the expert
trees, the semantic score of labels is of 0.78 on average, which proves that
our method is hampered by outliers. However, to the best of our knowl-
edge, this is the only approach that proposes to summarize a group of con-

cepts (contained in the leaves) into a smaller set of concepts.

The choice of hierarchical clustering is motivated by further applications.

In fact, this work has been done to explore a bigger picture, which is the
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complementarity of the nodes in the tree that is conveyed by the cluster
labels.

3.10. Complementarity of labels

In some work about clustering or graph partitioning, people are looking
for potential overlap after having separated the groups (Crampes and Plan
tid, 2o14). That is, once the groups have been identified, trying to find the
items that may belong to several clusters. The same kind of question is
relevant for hierarchical clustering. Since the clusters are not definitely
separated, we can observe the tree at different levels. For example, two
clusters labeled rTaLiaAN FoOD and FRENCH FoOD may belong to a cluster la-
beled roop.This means that at a given depth or granularity, these are two
distinct clusters but they are actually quite close. This reminds of the idea
of an overlap for community detection and in a more general way, the con-

cept of complementarity among clusters.

Complementarity of documents may be a useful concept for various appli-
cations. For instance, say a company is looking for two people for analyz-
ing patterns in the pna that may be related to a disease. What profiles does
this company need? Can two biologists achieve this goal, or two computer
scientists? Even though this example is very simple, it shows that the com-
pany will focus on candidates with the best synergy. This means the can-
didates who have the knowledge that best covers the subject: in pna se-
quencing, in algorithms, in NLP, in the specific disease, etc. This also en-
tails candidates who can communicate with each other by sharing some

abilities/knowledge. This concept of providing the best coverage of a field
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while having an overlap is a goal of hierarchical clustering which this work
may help to reach. Imagine you have a hierarchy of skills, rich enough to
be used as an ontology. A company could annotate its employees with those
skills and cluster the employees. This seems feasible as LinkedIn for exam-
ple uses a graph of skills and mapping skills from CVs to such a structure
seems pretty easy. Then, when the company needs to hire a few people,
the managers can add the candidates in the company cluster to see where
they are branched: do they form new clusters? Are they included in the
existing ones? In terms of human resources, this kind of analysis would

certainly be extremely useful.

The way the trees we create are presented also allows many inferences in
the cluster definition. Let us take the example of clustering users belong-
ing to an e-commerce website. This clustering relies on the items people
bought, considering that each item is annotated with concepts describing
the company catalog. We can think of an advertisement campaign aiming
at promoting some products of a specific brand. The question is about the
people to whom the company should send this advertisement. The goal
of the campaign is to promote the products only to people that will be in-
terested, otherwise future emails from this company will be blacklisted
by users who are annoyed of receiving uninteresting email. Defining the
list of interested customers is made easier by such a hierarchical cluster-
ing. If the product refers to ELEcTRONICS in general, then the advertise-
ment should be sent to anyone of this category. But the granularity of the
category can vary, for example with a product that will be of interest for
people who like smarRTPHONES only. Besides, the promotion itself differs,
as in one case, we present different electronic products and their general

use, while, in the other, we specify exactly why those smartphones should
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be bought. That is, depending on the group we address, the speech will
be different. I too, define my PhD subject differently whether I speak to

coworkers or my parents.

This kind of clustering could help exploring this intuitive aspect of human
understanding. So far, applications are always domain-specific, which
means that they assume everyone using the application understands what
is going on. For example, indexing a biomedical paper as in Chapter 2 is
specific to a thesaurus. That is, the annotations cannot be generalized eas-
ily to make it more understandable to non-expert people. Although our ap-
proach does not give a proper answer to this, the underlying matter seems
interesting to debate and hierarchical clustering can give good insights for

using knowledge representations to generalize/specialize descriptions.

3.11. Chapter summary

This chapter was motivated by previous work in clustering and labeling.
Although several approaches tried to make use of semantic data (GO con-
cepts, metadata, concept mapping, etc.) there was no generic approach

relying on solid solutions such as semantic similarities.

The studies we presented are thus exploratory and seek to answer or give in-
sight into answers to the following questions. How can we use semantic
annotations to cluster documents? Are they sufficient to accomplish this
task? Can they be used for labeling the resulting clusters? In order to an-
swer these, the chapter showed an extension of the development in Chap-
ter 2. While type-specific approaches are common in various domains—
text mining, video processing, etc.—, we are convinced that semantic sim-

ilarities can help build more interpretable and meaningful clusters. Actu-

163



CHAPTER 3 % Semantic clustering and cluster labeling

ally, we investigated how they can perform on their own, hence making

the approach generic.

As there is no work proposing a benchmark for evaluating hierarchical clus-
tering of semantically annotated documents, we built an interactive inter-
face asking the users to classify bookmarks annotated by concepts of Word-
Net. This tool allowed us to gather trees of bookmarks, each one being a
unique interpretation of a user. By adopting classical phylogenetic tools—
manipulating trees is at the core of this field—, we created a benchmark of
seven datasets of about 70 bookmarks each. Another dataset can be used
for tuning/learning. We evaluated our approach on this benchmark by
comparing how different our results were from the expert data. It appears
that our method performs better than classical HAC based on a matrix of
semantic similarities. Besides, we perform a study of complexity of our al-
gorithm and provide hints in order to optimize it so that it can be as fast as
classical HAC. Unfortunately, our results cannot be compared with other
methods from the literature because their source code is not available or
their method cannot be adapted to this specific benchmark. We thus hope
this work may prove useful for future research aiming at making use of se-
mantic annotations for clustering, in trying a semantic similarity, a new
clustering algorithm, etc. A perspective to this work is to consider novel
metrics for evaluating hierarchical classification as proposed by Kosmopou

losetall (2015).

We also studied the possibility of labeling a group of documents, i.e. aclus-
ter. Representing a cluster by concepts can be of great use under some con-
ditions: the labels must be specific enough and concise so that the reader

quickly gets an idea of the content of this cluster. We extended the USI
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framework by adding a constraint to have a control over the genericity of
thelabels. Depending on the context, the user may want more or less speci-
ficity. The context can be represented by the depth of a node in the cluster-
ing, for example. We compare our results with two baselines, one naive
and one elaborated, and show that our method performs better than both
of them. We also note that it is pretty sensitive to outliers, that human
experts tend to group in a single junk cluster. This is an inherent problem
of automatic approaches. When outliers are removed or when only consid-

ering clean clusters, however, the results we get are much more satisfying.

The discussion on the genericity of labels depending on the depth in the
tree led us to wonder about a more general matter: complementarity of doc-
uments. Even though complementarity is obvious when we think about
it (e.g. a toothbrush and toothpaste are complementary), it is difficult
to represent it formally. In many cases, being able to assess the comple-
mentarity of several items would be useful. For example, for recommend-
ing products on a website, where we want to suggest the user items that
would fit well together by definition, and not because of a content-based
analysis, e.g. because other customers often bought those items together.
We explored a way of representing complementarity through a hierarchi-
cal clustering. Indeed, observing the tree at different levels may lead to
different conclusions. For instance, INFORMATION RETRIEVAL and INDEX-
ING are two different fields, but depending on the context we might group
them as ARTIFICIAL INTELLIGENCE. This situation occurs frequently when
we talk to someone. If this person works in ARTIFICIAL INTELLIGENCE We
will be specific and talk about the two fields separately. However, if we
talk to someone who barely knows what those fields are, we will simply

refer to them as ARTIFICIAL INTELLIGENCE.
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4.1 < Onthesaliency of knowledge-based systems in IR

The rather broad title of this thesis is justified by a real wish to investi-
gate a novel way of using documents that are associated with an ontology
through semantic annotations. We focused on two wide topics related to
(or part of ) Information Retrieval, namely indexing and clustering. In fact,
the most important motivation of this thesis was to build generic methods

to fulfill the tasks needed in these domains.

4.1. On the saliency of knowledge-based systems in IR

In the first chapter, we mentioned that using the Knowledge Representa-
tions (KRs), mainly by relying on semantic similarities (see Definition B),
we might be able to bring generic solutions. Indeed, so far, the literature
proposes different approaches for different document types, e.g. videos,
genes, texts, etc. Even regarding a single document type, say textual, the
methods differ depending on the document context, e.g. scientific papers
are dealt with differently than novels or patent. It also happens that even
for a given document type and context, the content can be related to sev-
eral topics with different vocabularies (biomedical, chemical, etc.). This
means that there are several granularities of specificity and each of them
requires specific methods to capture the essence of the documents to anno-
tate them or cluster them. As a result, there are plenty of approaches in
the literature that focus on very specific aspects of vocabulary, context and

type to provide new indexing or clustering approaches.

The creation and use of such type-specific methods is motivated by the fact
thatit may perform better than more generic approaches that solely rely on

semantic annotations because the latter do not capture as many features
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as type-specific methods do (Fiorini et all, 014d). However, we are con-
vinced that the underlying structure of the knowledge helps to get compa-
rable performances. We tested this idea for indexing first, by building a
generic indexing framework called USI (User-oriented Semantic Indexer).
Instead of parsing the contents of a document to be annotated, we propose
to identify the k-NN (k-Nearest Neighbor) documents in the corpus of al-
ready annotated documents. This is done very easily by using an IRS (Infor-
mation Retrieval System) that looks in the corpus for similar documents
in terms of content. These methods are already specific to the type of doc-
ument and there is an extensive literature regarding them, which means
that efficient approaches are available to fulfill this task. Then, we pro-
pose to use the nearest neighbors to annotate the target document on the
sole basis of concepts annotating the neighbors. To do so, we use a seman-
tic similarity-based objective function that aims at summarizing the set of
concepts annotating the neighbors into a smaller set that corresponds to
the target document. The quality of annotations provided by our approach
is very promising as our annotations are better scored than the literature
to which we could compare them. Since other approaches in the litera-
ture also consider the neighboring documents, this proves that the use of
knowledge truly helps for finding the concepts that are the most relevant

regarding a neighborhood of semantically annotated documents.

The use of KRs is often associated with an idea of poor computing perfor-
mances. Of course, when compared to classical text-based similarities for
example, finding the shortest path in a graph seems heavier. Note how-
ever that, usually, a conceptual annotation is composed of about 20 con-
cepts at most while textual approaches use high-dimensional vectors to

annotate them. Also, a lot of efforts in the Semantic Similarity Measure
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(SSM) field helped in creating efficient tools for computing these similari-
ties. That, and the construction of optimized algorithms which use them
bring very interesting conclusions in terms of computational complexity.
We showed with USI that we can provide a method that is even faster (by
about a factor of 50) than Machine Learning ones, which often require a

heavy training phase (Fiorini et al., 2015d).

As aresult, USILis a successful example of a fast generic indexing approach
thatrelies on semanticsimilarities. Obviously, thisapproach also presents
afew drawbacks that are generally common to KR-based approaches. First,
itrequires an adapted domain-ontology which is not always available. Sec-
ond, it assumes that there exist documents that are already annotated. Fi-
nally, the choice of a semantic similarity can be problematic, although we

showed that the impact of this choice on USI is minimal.

It follows that semantic similarity-based approaches are more appropriate
in some contexts than in others. The most conspicuous one is the biomed-
ical field which is very rich in terms of ontologies. We participated in the
BioASQ challenge that featured a real indexing use case. All year long,
an NCBI team is dedicated to the semantic annotation of scientific papers.
They use a semi-automatic tool to suggest annotations that they curate.
This work is extremely time-consuming and any improvement of the qual-
ity of annotations that the semi-automatic method outputs is of huge im-
portance for their work. Theresults of USIat this challenge are outstanding
considering the fact that it is a generic approach (Fiorini et all, poish). It
actually ranks in the top three systems of the challenge and provides real
perspectives for improvements. Indeed, USI could be combined with a text-

specific approach to get even better results and efficiently contribute to the
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work of expert indexers.

The existence of such an indexing team also shows that even with powerful
algorithms like the ones designed for the challenge, the need for the hu-
man expert remains. We investigated some solutions to help the experts
in indexing documents in addition to proposing an annotation instead of
replacing them. Including the user in other steps of the process—rather
than at the end—happened to produce more relevant results compared to
a fully automatic method. Here again, the use of semantic similarities al-
lowed us to build interesting features such as a visual tool that displays the
impact of imprecision when the expert has to make a decision, thus limit-
ing the risk of mistakes (Fiorini et al., 2o14b). We dedicated a lot of effort
in the creation of ergonomic, flexible and easy-to-use interfaces that are
typically ready for technology transfer, as the LGI2P laboratory works with

several industrial partners.

4.2. On the genericity brought by semantics

As we claimed that USI is fast, generic and efficient, we wanted to extend
it to another use case that involves deeper modifications—i.e., not only
changing the corpus and the ontology. Clustering is another IR-related
task that may be helped by SSMs. We followed with the same idea as with
USI, that is, exploring the literature and trying to abstract from the previ-

ous methods.

We built a semantic similarity-based clustering approach that uses USI in
order to cluster documents and automatically annotate the clusters (Fior-

ini et alJ, po15d). Classical HAC (Hierarchical Agglomerative Clustering)
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is based on a pairwise similarity matrix of documents. The pairwise simi-
larities are used (averaged, compared, etc) in order to calculate the simi-
larity of two groups. Consequently, by iteratively finding the most similar
clusters, creating a new cluster and updating its similarity with the others
according to an agglomeration of pairwise similarities, these approaches
build a hierarchical representation of clusters. What we propose is to start
from a pairwise semantic similarity matrix of documents and update it by
using groupwise semantic similarities instead. We also label the clusters
along with their creation. Indeed, when a new cluster is created, we can
identify the semantics—the meaning, the reason—of this creation and use
it tolabel the cluster. Theresultisa tree thatis enriched by concepts associ-
ated to each node. Note that we process the resulting tree to keep only the
most relevant clusters instead of the very deep binary tree that agglomera-
tive clustering usually outputs. The strategy we detail is thus two-fold and
both aspects are evaluated, i.e. (i) the quality of the clusters when using

semantic similarities and (ii) the labels associated to each node.

Designing and evaluating this approach has been challenging as well, this
time because of the lack of resources in this domain. However, since we
are convinced that clustering semantically annotated documents is an im-
portant process, we created a benchmark for evaluating it. It is built upon
annotated bookmarks extracted from del.icio.us used in previous studies.
In order to create the benchmark, we developed an interfacef that provides
a clustering tool that experts can use to produce what will be our gold stan-
dards. This tool can be adapted to any ontology and any kind of document.
It provides an ergonomic workspace where the user can create and manage

clusters. Different views are proposed so that we can focus on specific as-

http://clustering.nicolasfiorini.info
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pects of the clusters (hierarchy or partitions). Besides, a visual signature
of the documents is proposed, based on their semantic annotations. By

using this signature, the user can easily compare the documents.

We compiled the expert trees gathered with the tool and created a bench-
mark? composed of eight datasets, one of which should be used for tuning
the method. We showed with this benchmark that our method performs
better than classical HAC. Besides, the semantic clustering combined with
the post-process gives trees that are not much more different from expert

trees than the expert trees with each other.

Regarding the cluster labels, the results are satisfying as our method out-
puts better labels than those of two alternatives we compared it to. How-
ever, we observe that our method is sensitive to outliers. These documents
are often poorly annotated or have nothing to dowith the other ones. While
the experts usually group them together in a junk cluster, our method fails
to identify them. An improvement of this detection would thus lead to
less noisy clusters and better labels. Again the use of semantic similarities
could help here, by identifying the documents in the dataset for which the

semantic annotation is distant from every other annotation.

The study of hierarchical clustering led us to wonder about some further
benefits of the hierarchical structure of the clusters. Although theideaswe
detailed are part of a very early reflection, we think that it can be developed
in-depth into a research project concerning the assessment of the comple-
mentarity of documents according to cluster organization. This kind of ap-
proach would certainly be problematic to evaluate but beneficial to a wide

range of domains (human resources, study of literature, etc.) and tech-

*http://benchmark.nicolasfiorini.info
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nologies (recommender systems, information retrieval, etc.). The idea be-
hind it is that with semantic clustering, we are given (i) a structure of doc-
uments (ii) associated with semantics. This means that we can propose a
hierarchy of documents, for example employees of a company clustered ac-
cording to their skills. When the company wants to evaluate the relevance
of a candidate to hire, an interesting study would be to integrate him/her
in the cluster, provided the skills of his/her CV. Maybe the candidate will
be branched in a dense cluster, meaning that his/her contribution to the
company may be redundant; or maybe he/she will be branched at the inter-
section of two clusters, meaning that this person would be a key element

for the synergy of the company.

With a more general scope, we stated two objectives (or raised two ques-
tions) in the introduction. The first one concerned the possibility of creat-
ing generic methods, the second one dealt with the impact of using seman-
tic similarities. In fact, the latter implies the former, among other things.
It is definitely possible to create generic methods, especially by relying on
semantic similarities. They bring a lot of consistence in the results that
overcomes the lack of features compared to type-specific approaches. On
the other hand, using semantic similarities also impacts the development
of the approaches. Our experience reveals that since the dawn of KRs, the
semantic similarities and other semantic techniques still remain cutting-
edge technologies as we face the lack of libraries, of supported languages
and most importantly, of benchmarks. There is thus a lot of work to be
done on this front, as we are certain that semantic similarity-based sys-
tems help in creating generic approaches that can be integrated in larger
pipelines at a low cost while providing a huge gain, especially due to the

inferences made possible by the use of KRs.
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4.3. Perspectives

Some more in-depth studies should be conducted regarding the user expe-
rience in some of our applications. For example, we can question how diffi-
cult it is to accurately point on a semantic map the location of a document
to be annotated. Indeed, we showed that it helps in improving the quality
of annotations, however we did not assess how hard it is in a real use case.
More generally, we think that working with ergonomists could enhance
all the interfaces developed in these projects. Nevertheless, the feedbacks
we could gather from users who experienced our tools were mostly posi-
tive, which convinces us that these tools are ready for technological trans-

fer with industrial partners such as promoted by the laboratory.

Our work focuses on the use of semantic similarities and shows that great
results can be achieved on their sole basis. This experience, certainly mo-
tivated by the huge effort in the NLP domain compared to that of SSs in
indexing and clustering, reveals many interesting conclusions. SS-based
systems can be fast, accurate and generic. Still, we would like to explore
the domain of NLP, particularly combined with that of SSs. We think both
approaches benefit from each other as they both presenta set of advantages
that can be exploited in order to build even better indexing and clustering
techniques. After all, the whole point of building generic approaches is to

be easily plugged in and adapted in more specific workflows.

This PhD thesis represents a good summary of my curriculum, initially in
biology and now in computer science. Certainly my motivation has been
and continues to be to help biologists and provide them with novel meth-
ods as proposed in this thesis and other studies (Fiorini et al., 2o14a)). Most

of all, I think that the creation of a new approach is at least as much im-
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portant as its implementation and sharing. This explains why, systemati-
cally, our approaches are coupled with demonstrations, interfaces, datasets,
results, etc. My future post-doctoral work at the NCBI will hopefully ful-
fill all these objectives as I hope to be able to have a direct impact on the
biomedical community by working on biomedical text-mining and, if ap-
plicable, combining such approaches with SS-based ones developed in this

thesis.

As an epilogue for this thesis, I would like to cite an inspiring quote of Hal

Elrod.

Give up being perfect for being authentic.
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A.1. List of abbreviations

By alphabetical order:

Al . ... Artificial Intelligence.

BioASQ . . ... ... .. A challenge on large-scale biomedical seman-
tic indexing and question answering.

BioASQ5000 . . . . . .. Anindexing dataset created by Mao etal. (2014),
from the BioASQ 2a task.

bioUSI . .. ... .. .. An interface for annotating biomedical papers
with USI.

BMA . .. ... ... ... Best Match Average, a groupwise semantic sim-

ilarity measure from Schlicker et al (2006).
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Conceptual Hierarchical Clustering, from Spanakis

etal] (2o11).

Directed Acyclic Graph.

Gene Ontology.

Hierarchical Agglomerative Clustering.

Heavy Semantic Clustering, a HAC method pro-

posed in chapter 3.

Information Content, the amount of informa-

tion a concept conveys.

Information Retrieval.

Information Retrieval System.

k-Nearest Neighbors.

Knowledge Representation.

Anindexing dataset created by Huangetal| (2011).

Learning-to-rank, an ML method for ordering

a set of items.

LCA stands for Lowest Common Ancestor. The

LCA-Fis a hierarchical F-measure.

Laboratoire de Génie Informatique et d’Ingénierie de Pro-

duction, the laboratory that hosts this research.

Latent Semantic Analysis, also called LSIdepend-

ing on the context.



A.1 < List of abbreviations

LSC . . ... ... . ... Light Semantic Clustering, a HAC method pro-
posed in chapter 3.
LSI . . . ... ... .... Latent Semantic Indexing, also called LSA de-

pending on the context.

MAP . . . ... ... ... Mean Average Precision, a metric used to eval-

uate ordered results.

MDS . .. ... ... ... Multi-Dimensional Scaling, a projection method.
MeSH . . . ... ... .. Medical Subject Headings, a biomedical thesaurus.
MICA . ... .. ... .. Most Informative Common Ancestor, an infor-

mation theory-based LCA (see LCA-F).

ML ... .......... Machine Learning.
moviesUSI . . . . . . .. An interface for annotating movies with USI.
MTI . ........... Medical TextIndexer, an indexing approach pro-

posed by Aronson et al.| (2004).

MTIEL . . . . . . ... .. MTI First Line, a system submitted to BioASQ
based on MTI.

NCBI .. ......... National Center for Biotechnology Information

NCBO . ... ....... National Center for Biomedical Ontology

NLM . . .......... National Library of Medicine.

NLM2oo7 . . ... .. .. Anindexing dataset proposed in Aronson et al.
(2004).
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NLP . ... ... ... ... Natural Language Processing.

PMRA . .. ... .. ... PubMed Related Articles, an IRS from Lin and
Wwilbur (2007).

PMRA* . . .. ... ... A modified version of PMRA that solely consid-
ers the textual similarity of two documents to

compare.

RI ............. Random Indexing, for which a description is

available in chapter 2 and Sahlgren (2005).

RRI .. .......... Reflective Random Indexing, an iterative ver-
sion of RI.

SC . ... ... Semantic Clustering.

SM . ... ... Similarity Measure.

SML . . . ... ...... Semantic Measures Library (Harispe etall, 2014d).

SS . ... Semantic Similarity.

SSM . . ... ... ... Semantic Similarity Measure.

SVD . ... ... ... .. Singular Value Decomposition, an important

process in LSA/LSI for factorizing a matrix.

SVM . . .. ... Support Vector Machine, an ML method for bi-

nary classification.

UsI .......... .. User-Oriented Semantic Indexing, a method de-

tailed in chapter 2.
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A.2. List of important mathematical notations

By order of appearance:

D.............. A set of documents.

0 ... An ontology.

C ... . .. The set of concepts in a KR.

He oo The taxonomy organizing C.

R .. The set of non-taxonomic relationships of C.

S The binary relation over C defining the taxon-
omy Hc.

Cove et A concept such that c € C. Some other nota-

tions exist throughout the manuscript: ¢/, u, v,

W, ¢, etc.

Orax -« v o o e The 6 ontology restricted to the taxonomic rela-
tionships.

IChame(C) - - . . . . . . .. The information content measure for a concept

c, as proposed by name.
desc(c) . . ........ The set containing c and all of its descendants.

SiMpame(c,c’) . . . . . .. The semantic similarity measure of two concepts

c,c/, as proposed by name.

MICA(c,c’) . . . .. ... The Most Informative Common Ancestor of ¢

and c'.
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anc(c) . ... ... .. .. The set containing c and all of its ancestors.

AB ... ... Sets of concepts. Note that A is also used to rep-

resent the tested solutions of USI (see Chapter

2).

PC) ..o Set of partitions of C.

K. ... ... ... The set of k nearest neighbors.

Ag . . . The annotation associated to document d.

A . o The family of sets of annotations of all docu-
ments of K.

Ay - oo The set of concepts used as the search space of
USI.

fA) ... The objective function of USI over the set of con-
cepts A.

A" L The optimal solution regarding the objective func-
tion f(A).

simg(A,B) . . . ... ... The groupwise semantic similarity of two sets

of concepts A, B.

simp(a,b) . ... ... .. The pairwise semantic similarity of two sets of

concepts a, b.

o The parameter that controls concision in USL. It
controls concision and abstraction in semantic

clustering of chapter 3.
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SumMaxCols(Mps) . . . .

sumMaxRows(My;)

SLINK . . ... ......

CLINK . . ... ... ...

ALINK . . ... ... ...

Big O notation for detailing the complexity of

an algorithm.

The size of Ain USI, soz = |A].

The size of Ag in USI, soz = |Ao|.

The maximal size of an annotation in 2.
The matrix of all pairwise similarities in USI.

The sum of all column maxima in the matrix
M,;. For better understanding, we also refer to

its value as SumMaxCols.

The sum of all row maxima in the matrix M.
For better understanding, we also refer to its

value as SumMaxCols.

The single linkage criterion for HAC.
The complete linkage criterion for HAC.
The average linkage criterion for HAC.
A cluster.

The label of the cluster CJ;.

The set of concepts used as the search space for

the semantic clustering approach.

The objective function of the semantic cluster-

ing algorithm over the set of concepts L.
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L o The optimal solution regarding the objective func-
tion g(L).
Smax - - - e e The maximal size of a cluster label.
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Pour exploiter efficacement une masse toujours croissante de documents électroniques, une branche de 1'Intelligence
Artificielle s'est focalisée sur la création et l'utilisation de systémes a base de connaissance. Ces approches ont prouvé
leur efficacité, notamment en recherche d'information. Cependant elles imposent une indexation sémantique des
ressources exploitées, i.e. que soit associé a chaque ressource un ensemble de termes qui caractérise son contenu. Ces
termes peuvent étre remplacés par des concepts issus d'une ontologie de domaine, on parle alors d'indexation
conceptuelle. Ceci permet non seulement de s'affranchir de toute ambiguité liée au langage naturel, mais également
d’exploiter les liens existants entre ces concepts. Le plus souvent cette indexation est réalisée en procédant a 1'extraction
des concepts du contenu méme des documents. On note, dans ce cas, une forte dépendance des méthodes d’indexation
au type de document considéré. Pourtant une des forces des approches conceptuelles réside dans leur généricité. En
effet, par l'exploitation d'indexation sémantique, ces approches permettent de traiter de la méme maniére un ensemble
d'images, de génes, de textes ou de personnes, pour peu que ceux-ci aient été correctement indexés. Les travaux de cette
thése proposent des solutions génériques pour indexer sémantiquement des documents ou des groupes de documents.

Deux axes de recherche sont suivis dans cette thése. Le premier est celui de l'indexation sémantique. L'approche
proposée exploite I'indexation de documents proches en contenu pour annoter un document cible. Grace a l'utilisation
de similarités sémantiques entre les annotations des documents proches et d'une heuristique efficace, notre approche,
USI (User-oriented Semantic Indexer), permet d'annoter des documents plus rapidement que les méthodes existantes
tout en assurant une qualité d’indexation comparable. Une attention particuliére a été portée dans ces travaux a
I'interaction homme-machine et une approche interactive prenant en compte I’impact d’une imprécision humaine a
également été proposée. Le second axe de cette thése concerne la classification de documents en fonction de leurs
contenus. La encore, la méthode est indépendante du type des documents considérés puisqu’ils sont regroupés sur la
base de leurs annotations sémantiques. Un autre avantage de cette approche est que les groupes formés sont
automatiquement annotés sémantiquement par notre algorithme.

L'ensemble des développements de cette thése ont fait I’objet d’un soin particulier concernant leur optimisation
algorithmique afin de permettre un passage a I’échelle, leur validation sur des benchmarks existants ou construits
spécifiquement et leur mise a disposition pour des développeurs (via des librairies java) et des utilisateurs finaux (via des
serveurs Web). Nos travaux ont montré que l'utilisation d’ontologies permet d'abstraire plusieurs processus et ainsi de
proposer des approches génériques sans dégrader les performances. Cette généricité n'empéche en aucun cas d'étre
couplée a des approches plus spécifiques, mais constitue en soi une simplicité de mise en place dés lors que 1'on dispose
de documents annotés sémantiquement.

In order to improve the search and use of documents, Artificial Intelligence has dedicated a lot of effort to the creation
and use of knowledge bases such as ontologies. They are graphs in which nodes represent a meaning unit-a concept-
and edges are their relationships. For example, this allows to represent the concept “dog” as a subclass of the concept
“mammal”. Indexing documents is a useful process for further processing and consists in associating them with sets of
terms that describe them. These terms can be concepts from an ontology, in which case the annotation is said to
be semantic. Such annotations benefit from the inherent properties of ontologies: the absence of synonymy and
polysemy. Most approaches designed to annotate documents have to read them and extract concepts from this reading.
This means that the approach is dependent from the type of documents, as a text would not be processed the same way
a picture or a gene would be. Approaches that solely rely on semantic annotations can ignore the document type,
leading to generic processes. This has been proved in Information Retrieval where researchers experienced approaches
called semantic information retrieval that can fit any type of document.

This thesis capitalizes on genericity accessible through semantic annotations to build novel systems and compare
them to state-of-the-art approaches. To this end, we rely on semantic annotations coupled with semantic similarity
measures. Of course, such generic approach can then be enriched with type-specific ones, which would increase the
quality of the results. This work explores the relevance of this paradigm for indexing documents. The idea is to rely on
already annotated close documents to annotate a target document. We defined a heuristic algorithm for this purpose
that uses the semantic annotations of these close documents and semantic similarities to provide a generic indexing
method. This resulted in USI (User-oriented Semantic Indexer) that we showed to perform as well as best current
systems while being faster. This idea has been extended to another task, clustering. Clustering is a very common
process that is useful for finding documents or understanding a set of documents. We propose a hierarchical clustering
algorithm that reuses the same components of classical methods to provide a novel one applicable to any kind of
documents. Another benefit of this approach is that when documents are grouped together, the group is annotated by
using our indexing algorithm. Therefore, the result is not only a hierarchy of clusters containing documents as clusters
are actually described by concepts as well. This helps a lot to better understand the result of the clustering. A particular
attention has been devoted in this work to algorithmic optimization and user-friendliness, with interactive human-
machine interfaces, that take into account imprecision of human actions.

This thesis shows that apart from improving the results of classical approaches, building conceptual approaches allows
us to abstract them and provide a generic framework. Yet, while bringing easy to setup methods-as long as
documents are semantically annotated-, genericity does not prevent us from mixing these methods with type-specific
ones, in other words creating hybrid methods.
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