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Cette synthèse introduit le manuscrit rédigé en anglais qui s’intitule “Se-

mantic similarities at the core of generic indexing and clustering approaches”. Elle en re-

prend les idées principales en détaillant tout d’abord les travaux existants

et le positionnement de la thèse par rapport à ceux-ci, fixe nos objectifs de

recherche, puis présente nos contributions en indexation et catégorisation.

Enfin, cet avant-propos s’achève sur les conclusions et enseignements tirés

de ces recherches, ainsi que nos perspectives de travaux futurs.

I. Contexte et positionnement

L’Intelligence Artificielle (IA) se divise selon Russell and Norvig (1995) en

quatre catégories : penser humainement, agir humainement, penser ra-

tionnellement et agir rationnellement. Cette définition ouvre un large ch-

amp de recherche qui englobe de nombreuses disciplines. Prenons pour

exemple un système de recommandation tel que celui d’Amazon proposant

des produits pouvant intéresser un internaute, et un programme de jeu

d’échecs. Clairement, ces deux applications semblent avoir des fonction-

nements sans lien commun et pourtant, ils reposent tous deux sur de l’ap-

prentissageautomatique.Ceparadigme,grandement exploité en IA, consiste

à créer des modèles sur la base de diverses sources afin de faire des pré-

dictions ou de prendre des décisions. Il diffère notamment des autres ap-

proches par le fait qu’il requiert de définir non pas un modèle à suivre,

mais un ensemble de critères que le système optimise grâce à un ensemble

d’exemples (jeud’entrainement) pour créerunmodèle optimisé sur les don-

nées.

L’apprentissageautomatiqueestnotammentutiliséde façon intensivedans
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le cadre de la Recherche d’Information (RI). Celle-ci est au cœur de bien

des systèmes logiciels impliquant des techniques appartenant à l’IA : re-

commandation, aide à la décision, veille technologique, etc. Ce domaine

consiste à étudier les moyens de représenter, stocker, organiser et accéder

à des éléments d’information (Baeza-Yates and Ribeiro-Neto, 1999), que

nous nommons documents dans ce manuscrit. Le processus de RI est gé-

néralement familier, dumoins du côté utilisateur, du fait de notre utilisa-

tion intensive desmoteurs de recherche. La Figure A propose une représen-

tation d’un tel processus. Tout d’abord, un utilisateur exprime un besoin

en information sous la forme d’une requête. Le SRI (Système de Recherche

d’Information) a en charge de trouver dans un corpus préalablement in-

dexé (nous y reviendrons dans la section suivante), les documents qui font

sens au regard de la requête (étape 1). Un score de pertinence est affecté à

chaque résultat (étape 2), puis les résultats sont ordonnés en fonction de

ce score et retournés à l’utilisateur. Il en découle que l’étape critique est

l’association d’un score de pertinence à chaque document, qui repose prin-

cipalement sur l’indexation des documents dans le corpus. Ces deux étapes

sont détaillées dans la section suivante.

I.I. L’indexation, un processus clé de la recherche d’information

Le processus d’indexation d’un corpus de documents consiste à construire

une représentation du contenu de chaque document la plus fidèle possible,

mais favorisantuneexploitation logicielle desplus rapides et efficaces. L’in-

dex est donc construit de façon à ce que la recherche d’information (étape

1) soit rapide. Avant le calcul de pertinence, il est important d’identifier

les documents candidats au regard d’une requête (premier filtrage gros-

sier). Puisque parcourir l’ensemble des documents serait bien trop coûteux,
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Système de Recherche d’Information (SRI)

Besoin en
information

Indexation

Requête CorpusAppariement

Calcul de pertinence

Résultats triés par pertinenceAffichage

Figure A. : Processus classique de RI.

une solution consiste à construire un fichier inverse. L’idée est de stocker

pour chaque élément de l’indexation (terme, concept,...), la liste des docu-

ments qui le contiennent dans leur indexation. De cette façon, pour une

requête contenant un terme, le SRI peut instantanément retourner l’en-

sembledesdocumentspotentiellement intéressants car contenant ce terme.

Etudions désormais l’étape suivante évoquée ci-dessus : le calcul de la per-

tinence. Dans la littérature, de nombreux modèles de pertinence ont été

proposés. Les plus basiques sont lesmodèles booléens, qui demandent d’ex-

primer la requête sous une forme logique (Lancaster and Gallup, 1973). Le

principal problème de cette approche est qu’une fois que les documents po-

tentiels ont été identifiés, leur score de pertinence est binaire : 1 si le do-

cument satisfait la représentation logique de la requête, zéro sinon. Les

modèles vectoriels (Salton et al., 1975) s’appuient quant à eux sur l’algèbre.

Ils proposent de représenter la requête et les documents sous la forme de

vecteurs de poids associés aux termes qu’ils contiennent. Ensuite, la si-
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milarité entre deux vecteurs peut être estimée grâce aux propriétés algé-

briques, par exemple via une mesure de cosinus. Le dernier paradigme ex-

ploité est probabiliste (Maron and Kuhns, 1960 ; Robertson et al., 1995) et

modélise la probabilité d’un document d’être pertinent pour une requête.

Les probabilités élémentaires sont apprises à partir d’un ensemble d’ex-

emples. Tous cesmodèles sontmalgré tout extrêmement dépendants de la

qualité de l’indexation (ou annotation) des documents, qui reste au cœur

de la recherche d’information. C’est pourquoi elle fait l’objet principal de

cette thèse avec deux questions en filigrane : est-ce que l’utilisation d’onto-

logies de domaine et de mesures sémantiques conduisent à de meilleures

prédictions/décisions ? Et ces approches permettent-elle le développement

de solutions génériques ?

I.II. De l’utilité des données catégorisées

La RI exploite également d’autres processus de l’IA, comme par exemple

la catégorisation ou classification. Catégoriser est une tâche que l’Homme

s’attache à faire depuis bien longtemps, et ce de façon très fréquente à

des fins diverses d’apprentissage ou de transmission de connaissance, par

exemple. La catégorisation consiste à rassembler des objets similaires et à les

éloigner de groupes d’objets différents, ce qui nécessite dans un cadre infor-

matique de classification automatique la définition d’une distance qui per-

mettra de faire ces rassemblements ou séparations (Manning et al., 2008).

Deuxgrandes classesd’approches coexistent : la catégorisationhiérarchique

et le partitionnement. La première consiste à identifier la structure inhé-

rente aux documents catégorisés sous la forme d’un arbre (par exemple, la

phylogénie des espèces en bioinformatique) alors que le partitionnement

se focalise sur la délimitation de groupes. Le choix de l’une ou de l’autre
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dépendra des données d’entrée et du résultat souhaité.

En RI, la classification est utilisée notamment pour la diversification des

résultats. Comme Clarke et al. (2011) l’expliquent, les résultats d’une re-

cherche, de par leur “proximité” à une requête, ont de bonnes chances

d’être similaires entre eux, et cette redondance peutne pas satisfaire l’utili-

sateur. La classification permet de pallier ce problème comme c’est notam-

ment explicité dans Gollapudi and Sharma (2009), où l’idée est de propo-

ser des groupes de résultats concernant les différents aspects de la requête.

Agrawal et al. (2009) ; Skoutas et al. (2010) suggèrent que cette approche

peut même contrer une éventuelle ambiguité de la requête en proposant

des résultats correspondant aux différents sens qu’elle peut avoir.

La catégorisation est souvent suivie d’une étape d’étiquetage qui permet

de comprendre les groupes qui ont été réalisés (Role andNadif, 2014). Cette

tâche est elle aussi parfois automatisée, comme dans les travaux de Ber-

nardini et al. (2009) : leur application propose, suite à une recherche d’in-

formation, plusieurs groupes de résultats étiquetés que l’utilisateur peut

choisir pour spécifier sa requête.

I.III. Vers des approches basées sur la connaissance d’un domaine

Afin de rendre un système intelligent, il semble intuitif de le pourvoir d’une

certaine connaissance d’un domaine. Pour ce faire, une solution est de re-

présenter la connaissance de façon compréhensible pour l’outil informa-

tique (Russell andNorvig, 1995). L’ontologie est certainement la représenta-

tion la plus connue,mais d’autres plus oumoins formelles ont été décrites

(Harispe et al., 2015b ; Sy et al., 2012). Par conséquent, des systèmes faisant

usage de ces connaissances ont émergé, notamment dans les domaines où
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un haut niveau d’expertise est requis comme dans le domaine biomédical

(Smith et al., 2007). Ces systèmes ont été mis à l’épreuve et comparés aux

systèmes plus classiques, par exemple ceux qui sont basés sur des termes et

utilisent des techniques de traitement de la langue naturelle (TALN). Une

nette amélioration a été constatée en RI (Haav and Lubi, 2001), principale-

ment parce que les approches classiques sont perturbées par la présence de

synonymie et l’ambiguité inhérente à la langue (Giunchiglia et al., 2009 ;

Bhagdev et al., 2008 ; Stokoe et al., 2003). Le bénéfice de telles approches ne

réside pas uniquement en l’absence de synonymie (ainsi que de polysémie)

grâce à l’utilisation de concepts—les unités de sens dans une représenta-

tion de connaissances—en place des termes. La structure proposée par la

représentation des connaissances permet par exemple de savoir que chien

est un mammifère en considérant les relations entre les concepts, et en-

suite d’exploiter cette connaissance dans le processus.

Les mesures de similarité sémantique visent justement à exploiter ces dif-

férentes relations afin d’estimer la similarité de deux concepts. De nom-

breusesmesures existent et Harispe (2014) en propose une description éten-

due. Dans nos travaux, nous nous appuyons principalement sur des me-

sures de similarité sémantique exploitant la théorie de l’information et te-

nant compte des relations taxonomiques (lien de spécialisation is_a ou de

généralisation), comme dans l’exemple cité au-dessus. A la vue du gain

pour ce qui est de la qualité des systèmes basés sur des représentations des

connaissances, il apparaît logique que leur utilisation ait été étendue à l’in-

dexation et à la catégorisation.

I.III.1. L’annotation sémantique de documents

Une nette amélioration des résultats de la RI ayant été constatée lors de
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l’utilisation de systèmes basés sur la représentation de connaissance, l’in-

dexation sémantique s’est rapidement imposée. Elle a été notamment ap-

pliquée aux articles scientifiques, dans le domaine biomédical (PubMed,

du NCBI, propose des articles annotés par le MeSH par exemple). L’indexa-

tion sémantique consiste à indexer les documents d’un corpus avec des

concepts d’une ontologie de domaine plutôt qu’avec des termes. Pour auto-

matiser ce processus, plusieurs stratégies ont été envisagées. La première

découle directement des approches textuelles et consiste à extraire les con-

ceptsdu texte. Ensusd’identifier les termesdudocumentquiprédominent,

le but est ici de rechercher les concepts auxquels il font référence. C’est pré-

cisément l’idée derrière MetaMap (Aronson, 2001). La principale difficulté

de ces approches reste de lever toute l’ambiguité lors du passage du terme

au concept, problème pour lequelMaxMatcher (Zhou et al., 2006a) apporte

des éléments de réponse. Pour avoir une vision plus large de ces approches,

il est possible de se reférer à Neves and Leser (2014) qui proposent une étude

rassemblant de nombreux outils.

L’alternative à l’extractiondes concepts consiste à reposer surdes approches

d’apprentissage automatique. Ces méthodes requièrent l’identification de

critères qui, optimisés sur un jeu d’apprentissage, permettront de prédire

les annotations du document. Plusieurs pistes sont suivies, comme l’uti-

lisation des précédents articles des auteurs ou les articles cités (Delbecque

and Zweigenbaum, 2010) ; le score associé à chaque concept retourné par

une méthode d’extraction de concepts (Gay et al., 2005) ; ou la fréquence

d’apparition du concept dans des documents du corpus proches du docu-

ment à annoter (Trieschnigg et al., 2009). Le fait de s’appuyer sur des do-

cuments déjà annotés est une méthode très utilisée, appelée méthode des

k plus proches voisins (Huang et al., 2011 ; Mao and Lu, 2013 ; Mao et al.,
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2014). Elle consiste à identifier le voisinage d’un document grâce à un sys-

tème similaire à la RI. Par exemple, en soumettant le titre du document

cible en requête, onobtientune listededocumentsproches.Cesdocuments

étant déjà annotés, leurs concepts sont ensuite filtrés ou ordonnés par de

nombreuses approches d’apprentissage automatique (Huang et al., 2011 ;

Delbecque and Zweigenbaum, 2010 ; Liu et al., 2014).

I.III.2. La catégorisation sémantique

L’intégrationdebases de connaissances a également été expérimentéepour

plusieurs approches de classification automatique comme le notent Bhara-

thi and Venkatesan (2012). Les premiers à développer l’idée et proposer de

classifier des documents textuels sur la base des concepts extraits de leur

contenu sont Hotho et al. (2001, 2002, 2003). Ces derniers émettent l’hy-

pothèse que comparer les documents sur la base de leurs annotations tex-

tuelles n’est pas suffisant et proposent de les comparer selon les concepts

qui en sont extraits. Afin de tirer parti de la structure de connaissance asso-

ciée, ils intègrent dans le calcul les hypernymes directs des concepts. Ainsi,

deuxdocuments annotés par les termes “chien” et “chat” seront considérés

comme proches puisqu’ils seront respectivement annotés par les concepts

{chien, carnivore, mammifère} et {chat, carnivore, mammifère}. Glo-

balement, cette façon de procéder est au coeur des approches de catégorisa-

tion sémantique (Spanakis et al., 2011 ; Yoo andHu, 2006). Certains travaux

vont plus loin pour exploiter la représentation de connaissances en utili-

sant des mesures de similarité sémantique entre les concepts annotant les

documents (eux aussi extraits du contenu).

A la suite de regroupements faisant intervenir diverses méthodes de cal-

cul de similarité, il est nécessaire de les étiqueter pour rendre explicites les
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raisons de ce regroupement. Les approches existantes sont principalement

dédiées à l’étiquetage de groupes de gènes. Cela s’explique par le fait que les

biologistes ont spécifiquement besoin de ces outils pour analyser les résul-

tats d’une puce à ADN, par exemple. En effet, ce processus fournit de nom-

breuses valeurs d’expression pour un grand nombre de gènes testés dans

différentes conditions. Ceux exprimés de façon similaire et dans des condi-

tions similaires ont de grandes chances d’intervenir dans le même proces-

sus métabolique qu’il convient d’identifier. Cette identification passe par

un étiquetage du groupe de gènes concernés sur la base des annotations sé-

mantiques qui leur sont associées1. La principale limite de cette approche

est qu’elle est souvent basée sur une étude statistique qui cherche à identi-

fier les concepts surreprésentésdans le groupe (BeissbarthandSpeed, 2004 ;

Lee et al., 2005 ; Bauer et al., 2008), or cette stratégie est souvent appliquée

à des partitions de gènes et non à des structures hiérarchiques. Dans cette

thèse, nous nous confrontons au problème de donner une sémantique à

une hiérarchie de catégories, où les plus abstraites devraient être annotées

par des concepts généraux alors que les plus fines devraient l’être par des

concepts plus spécifiques.

II. Contributions de la thèse

II.I. Une approche générique d’indexation sémantique

L’état de l’art fait état de nombreuses approches pour annoter sémantique-

ment des documents textuels, particulièrement des articles du domaine

biomédical ; or, d’autres types de documents sont souvent annotés par des

concepts issus d’ontologies, notamment des séquences génétiques ou des
1Il est pratique courante d’annoter les gènes avec des concepts de la Gene Ontology.
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images. Ainsi, nous nous somme concentrés sur la réalisation d’une ap-

proche rapide et générique d’indexation sémantique de documents.

II.I.1. Détail de la méthode

L’idéed’une telle approcheest denepasdépendre exclusivementducontenu

du document pour l’annoter, mais de s’appuyer sur les annotations des do-

cuments qui lui sont proches. Nous avons repris une technique récurrente

dans la litérature, celle basée sur les k plus proches voisins. Celle-ci permet

de disposer d’un ensemble de concepts potentiellement pertinents pour an-

noter un document donné. L’innovation de notre approche réside essen-

tiellement dans la manière d’identifier les concepts pertinents au sein de

cet ensemble. Nous partons du principe que des documents proches au re-

gard d’un système de recherche d’information (et donc proches enmatière

de contenu) doivent aussi être proches en matière d’annotations. Ainsi,

la qualité d’annotation du document est calculée selon sa similarité avec

les documents voisins. Le calcul de similarité est rendu possible par l’uti-

lisation de mesures de similarités sémantiques, qui tiennent compte de

la structure de connaissance. De plus, il est possible de calculer la simila-

rité sémantique de deux groupes de concepts (donc de deux annotations)

avec une telle approche. De fait, on compare non plus la pertinence d’un

concept au regard du voisinage, mais une annotation complète. Ce type

d’approche permet de favoriser la synergie de l’annotation en empêchant des

redondances comme un concept parent et son fils dans l’annotation (par

exemple {chien,canidé}).

Cependant, la simple similarité avec le voisinage ne suffit pas pour consti-

tuer une annotation valable. En effet, cette seule condition n’empêcherait

pas d’annoter le document avec de nombreux concepts, or souvent, l’in-

xii



dexation d’un document se résume à une dixaine de concepts. Au mini-

mum, il faut être capable d’adapter la taille de l’annotation selon la taille

usuellement choisie pour le corpus. Nous proposons une fonction objectif

rassemblant ces éléments (similarité sémantique, similarité avec le voisi-

nage et contrainte sur la taille de l’annotation) qui permet d’annoter un

document uniquement sur la base de son voisinage. La description de

la fonction objectif ainsi que d’un algorithme l’implémentant a fait l’objet

de la publication scientifique suivante :

Indexation conceptuelle par propagation.Application àun corpusd’ar-

ticles scientifiques liés au cancer.

Nicolas Fiorini, Sylvie Ranwez, Vincent Ranwez, et Jacky Montmain. Actes de CORIA

2014,COnférence enRecherched’InformationetApplications,Nancy, Fran-

ce, 19-21 mars 2014.

II.I.2. Optimisation algorithmique

La principale limite de l’utilisation des similarités sémantiques est la com-

plexité algorithmique qu’elles induisent. Par conséquent, nous nous som-

mes efforcés de créer une approche de complexité polynomiale raisonnable.

L’algorithme permettant d’indexer un document nommé USI (User-orient-

ed Semantic Indexer) est optimisé, ce qui nous permet de réduire significa-

tivement sa complexité. Afinde tester la pertinence de la complexitéfinale,

nous comparons notre approche aux approches de l’état de l’art pour ce qui

est du temps d’exécution. Les résultats de cette comparaison sont sans ap-

pel, puisqu’USI s’exécute 50 fois plus rapidement qu’une approche ba-

sée sur l’apprentissage automatique, déjà rapide en soi. Cette optimisa-

tion ainsi que la comparaison des résultats d’USI avec l’existant sont propo-

sées dans la publication suivante :
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USI : a fast and accurate approach for conceptual document annota-

tion.

Nicolas Fiorini, Sylvie Ranwez, Jacky Montmain, Vincent Ranwez. BMC Bioinforma-

tics, Volume 16, Issue 83, 14 March 2015.

II.I.3. Évaluation sur un challenge international

Afin de tester la qualité et la pertinence de notre approche, nous avons par-

ticipé à un challenge d’annotation d’articles biomédicaux à grande échelle,

BioASQ2015.Nousavonsdéveloppéplusieurs variantesd’USI afinnonseule-

ment de tester sa flexibilité, mais aussi de proposer un système optimisé

pour ce challenge. En effet, bien qu’USI soit générique, son but est aussi

d’être facilement adaptable, c’est-à-dire facilement optimisable sur un en-

semble spécifique de documents.

Nous avons testé différentes tailles de voisinage, différentes mesures de

similarité sémantique, l’intégration de baselines2. Chaque jeu de test3 de-

vait être annoté enmoins d’une journée et pouvait contenir jusqu’à plus de

21 000 documents. Le meilleur résultat d’USI est obtenu pour le troisième

jeu de test où il se positionne second. Sur la totalité des jeux de test, il est

troisième parmi une quinzaine de participants internationaux. Ce résul-

tat est extrêmement encourageant, tenant compte du fait qu’USI est une

méthode générique en comparaison aux approches bien plus lourdes (com-

portant des phases d’apprentissage longues) et capturant lesmoindres spé-

cificités du contexte. Il valide par là même l’utilisation de similarités

sémantiques et suggère l’utilisation d’une approche générique cou-

2BioASQ fournit, pour chaque jeu de test, les résultats d’approches considérées comme
références.

3Au total, 15 jeux de tests ont été proposés.
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plée à des approches exploitant plus précisément les spécificités du

contexte applicatif. Les résultats à ce challenge, ainsi que la description

des différentes variantes d’USI soumises au challenge ont fait l’objet de la

publication suivante :

USI at BioASQ 2015 : a Semantic Similarity-Based Approach for Seman-

tic Indexing

Nicolas Fiorini, Sylvie Ranwez, Sebastien Harispe, Jacky Montmain and Vincent Ranwez.

In Working Notes for the Conference and Labs of the Evaluation Forum,

CLEF 2015, Toulouse, France, September 8-11 2015.

II.I.4. “U” pour User-oriented

Au-delà de l’annotation entièrement automatiquede documents, nous avons

voulu étudier l’impact occasionné par l’intervention d’un expert. En effet,

notre objectif n’est en rien de remplacer l’expert, mais au contraire de lui

fournir un environnement qui l’assiste dans ses activités quotidiennes et

allège certaines phases du processus d’indexation, ceci en s’adaptant au

maximum à son contexte. Puisque la sélection du voisinage est une étape

critique pour USI, nous souhaitons permettre à l’utilisateur de participer à

sa sélection. Nous proposons de suivre l’intuition de Delbecque and Zwei-

genbaum (2010) sur un corpus d’articles scientifiques. Pour un document

à annoter, nous recherchons les articles déjà publiés des co-auteurs ainsi

que ceux cités en références. Comme chaque document est annoté séman-

tiquement, nous calculons la similarité sémantique de toutes les paires de

documents que nous projetons sur un espace à deux dimensions grâce à la

technique MDS (Multi-Dimensional Scaling). Ensuite, nous demandons à

l’utilisateur de pointer l’endroit où, selon lui, ce document devrait se situer

sur la carte sémantique. Un clic sur cette carte identifie implicitement un
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voisinage qui permet ensuite l’annotation du document.

Afin de comparer une telle approche à une autre entièrement automatique,

nous simulons des clics experts aux endroits où le document devrait être

positionné. C’est-à-dire, lorsque nous calculons les similarités des paires

de documents, nous calculons aussi celles correspondant au document à

annoter, puisque nous disposons de son annotation dans le cadre de l’éva-

luation. La carte est ainsi créée et le document en question en est retiré,

puis un clic est simulé à l’endroit où il était positionné. USI est lancé sur

la base du voisinage défini implicitement par le clic et une annotation est

générée. Les résultats montrent qu’une telle approche permet d’obtenir

de meilleures annotations grâce à un voisinage mieux défini qu’avec

une approche totalement automatique. Deux démonstrateurs sont dispo-

nibles afin d’essayer le principe de la carte sémantique pour annoter un

document :

Démonstration sur des articles biomédicaux

http://bio.usi.nicolasfiorini.info

Démonstration sur des films

http://movies.usi.nicolasfiorini.info

II.I.5. Impact de l’imprécision

L’action de l’expert peut toutefois être imprécise. Nous avons donc étudié

l’impact d’un écart du clic de la souris et la sensibilité d’une telle approche.

Nous avons ainsi amélioré l’outil visuel en l’agrémentant d’un indice de

sensibilité. Lorsque la carte est créée, elle est divisée en n sous-cartes (ou

tuiles). Un clic est simulé au centre de chacune d’entre-elles, leur donnant
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ainsi une annotation sémantique. Les similarités sémantiques de chaque

tuile avec les tuiles adjacentes sont calculées. Lorsque l’utilisateur survole

la carte avec sa souris, une zone est colorée sur la carte, correspondant aux

tuiles très similaires à la tuile survolée. Par conséquent, si l’utilisateur sur-

vole une tuile dont la zone colorée est large, cela veut dire que l’imprécision

importe peu puisque l’annotation en résultant sera à peu près similaire.

Par contre, si cette zone est petite, alors l’utilisateur devra prêter plus d’at-

tention à l’endroit du clic. Cette étude de l’impact de l’imprécision lors de

l’interaction avec l’utilisateur a fait l’objet de la publication suivante :

Copingwith imprecisionduring a semi-automatic conceptual indexing

process.

Nicolas Fiorini, Sylvie Ranwez, Jacky Montmain, and Vincent Ranwez. In Information

Processing andManagement of Uncertainty (part III), proceedings of IPMU

2014, 15th International Conference on Information Processing and Mana-

gement of Uncertainty in Knowledge-Based Systems, Series : Communi-

cations in Computer and Information Science, Vol. 444, Springer, Laurent,

A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (Eds.), ISBN : 978-3-319-

08851-8, pp. 11-20, Montpellier, France, July 15-19 2014.

II.II. Catégorisation et étiquetage sémantique

Notre approche générique de l’indexation sémantique a été étendue pour

répondre aubesoinde catégorisation et d’étiquetage de catégories. Plus par-

ticulièrement, nous y explorons l’impact de l’utilisation de similarités sé-

mantiques dans le cadre de la catégorisation de documents annotés séman-

tiquement. Là encore, l’idée est de réaliser une approche de classifica-
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tion et de labellisation indépendante du type de documents.

II.II.1. Détails de l’approche

La catégorisationhiérarchiqueproposantune structurede catégories etnon

une simple partition, nous nous sommes concentrés sur cette technique

plus informative. L’algorithme classique pour une telle approche est ité-

ratif. Dans un premier temps, chaque document est placé seul dans une

catégorie. Ensuite, les paires de catégories sont itérativement regroupées

jusqu’à ce qu’il n’en reste qu’une. Cette technique requiert donc d’être ca-

pable de calculer plusieurs similarités. La première est celle entre deux do-

cuments, la seconde est celle entre deux catégories, i.e. entre groupes de

documents. La similarité entre deux documents est fortement dépendante

du type de documents à classifier. Quant à la similarité entre groupes de

documents, elle est traditionnellement une agglomération des similarités

des paires de documents dans les deux catégories comparées (minimum,

maximum,moyenne...).

Nous proposons de remplacer cesmétriques par une similarité sémantique

de groupe. La similarité entre deux documents peut en effet être calculée

selon la similarité sémantique de leurs annotations. Pour comparer deux

groupes de documents, au lieud’utiliser une agglomérationdes similarités

par paire des documents qu’elles contiennent, nous proposons (i) d’étique-

ter sémantiquement la nouvelle catégorie et (ii) d’utiliser cet étiquetage

sémantique pour la comparer avec les autres. L’étiquetage d’une catégorie

reprend notre algorithme d’indexation à la différence—importante—près

que celui-ci inspecte les concepts plus généraux dans l’ontologie et utilise

un critère permettant de sélectionner ces concepts plus généraux au fur et à

mesure que les catégories deviennent abstraites. Ainsi, la classification re-
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pose entièrement sur l’utilisation de similarités sémantiques et le contenu

des documents n’est jamais pris en compte. Enfin, les arbres générés étant

binaires (chaque nœud contient deux enfants), nous les rendons plus ex-

ploitables par l’Homme en diminuant leur profondeur sur la base des simi-

larités sémantiques calculées entre les nœuds.

Il endécoule que la créationdes catégories est fortementdépendantede leur

étiquetage, et vice-versa. Par conséquent, nous proposons une approche

de catégorisation et d’étiquetage sémantique entièrement cohérente

au regard d’une mesure de similarité sémantique (i.e. les étiquettes

coincident avec la classification).

II.II.2. Constitution de jeux de référence

Le principal problème rencontré dans notre approche était qu’il n’existait

pas de jeu d’évaluation permettant de tester sa fiabilité. En effet, la catégo-

risation hiérarchique dépend énormément des données catégorisées (d’où

notremotivation à créer uneméthode générique, encore une fois). De plus,

il n’existe pas non plus, à notre connaissance, de jeu de test pour catégori-

ser des données annotées sémantiquement.

Nous avons souhaité pallier ce manque en proposant un jeu d’évaluation.

Sur la base de marque-pages annotés extraits du site del.icio.us (Wetzker

et al., 2008), Andrews et al. (2011) ont proposé un ensemble de marque-

pages annotés sémantiquement avec WordNet. Nous avons développé une

interface en ligne permettant de classifier manuellement des docu-

ments annotés sémantiquement et proposé l’outil adapté aux marque-

pages à des étudiants et chercheurs de l’école desmines d’Alès. Cet outil est

une contribution à part entière car il a été conçu dans l’unique but d’aider
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l’utilisateur à classifier les documents, en lui fournissant de nombreux ou-

tils visuels et en utilisant des moyens d’interaction intuitifs (par exemple,

par glisser-déposer). Cette interface est disponible à l’adresse suivante en

tant que démonstrateur : http://clustering.nicolasfiorini.info.

Les retours des utilisateurs nous ont permis de constituer un jeu d’évalua-

tion. L’ensemble des marque-pages a été divisé en 8 jeux de données : un

pour optimiser la méthode, les autres pour l’évaluer. Les classifications

fournies par les utilisateurs concernent donc les 7 jeux de données et consis-

tent en une arborescence de marque-pages dont chaque nœud est étiqueté

sémantiquement avec WordNet. Ces jeux de données répondent parfaite-

ment à notre désir d’approche générique puisqu’ils sont composés unique-

ment d’éléments annotés, sans aucune information sur le contenu de ces

éléments. Les arbres ainsi proposés peuvent servir de jeux de référence

pour évaluer la classification, mais aussi l’étiquetage des catégories.

Les jeux de références sont bien sûr à disposition sur Internet, à l’adresse

suivante : http://benchmark.nicolasfiorini.info.

II.II.3. Evaluation de la méthode

L’évaluation porte sur deux points : la classification et l’étiquetage des ca-

tégories. Pour évaluer la classification, nous nous sommes appuyés sur des

mesuresdedistanced’arbres en comparant les arbres obtenusavec les arbres

réalisés par les opérateurs humains (que l’on appelle arbres experts). Tout

d’abord, nous avons observé les divergences entres les arbres experts entre

euxetdéduitun écart type. Ensuite,nousavons comparé ladistancemoyenne

entre l’arbre obtenu et les arbres experts pour chaque jeu de test avec cet

écart type.Nousavonsprocédéde lamême faconpour évalueruneapproche

classique de classification. Il apparaît clairement que la classification sé-
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mantique est meilleure qu’une approche classique basée sur une ag-

glomération des similarités de paires de documents. Sur certains jeux

de données, on n’observe pas de différence plus grande entre les arbres

créés automatiquement et les arbres experts, qu’entre les arbres experts

entre eux. Le code source de l’approche, ainsi que les résultats obtenus sur

les jeuxde référence sontdisponibles à cette adresse :http://sc.nicolasfiorini.

info.

L’évaluation des étiquettes sémantiques associées aux catégories consiste

à comparer, pour chaque arbre expert de chaque jeu de données, les éti-

quettes produites par notre méthode à celles données par l’utilisateur. La

qualité d’une étiquette est représentée par sa similarité sémantique avec

l’étiquette experte. Les similarités sont moyennées, ce qui constitue un

score pour chaque jeu de test. Nous avons comparé ces résultats à plusieurs

autres techniques d’étiquetage, à savoir (i) prendre l’ensemble des concepts

annotant les documents de la catégorie et (ii) utiliser exactement l’algo-

rithme d’indexation présenté ci-dessus. Notre approche fournit de meil-

leures étiquettes que ces deux alternatives, prouvant qu’elle permetmieux

qu’une approche d’indexation de résumer un ensemble de concepts en

quelques concepts enutilisant les propriétés de généralisation/spécia-

lisation de l’ontologie.

III. Conclusions et ouverture

Nos travaux explorent la faisabilité et la pertinence de plusieurs objectifs

dans les domaines de l’indexation et de la catégorisation sémantiques.

1. Étudier l’impact de l’utilisation de similarités sémantiques.

Toutes nos applications sont basées sur des similarités sémantiques.
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Estimant qu’elles sont un excellentmoyen d’exploiter la structure in-

hérente à une représentation de connaissance, nous proposons des

approches innovantes en indexation et catégorisation les utilisant.

Les résultats obtenus dans ces deux domaines suggèrent que leur uti-

lisation devrait être encouragée.

2. Proposer des approches génériques pour certains traitements basés sur la sémantique.

Parce qu’elles sont basées sur une description sémantique à l’aide des

concepts d’une ontologie, les approches que nous proposons pour la

manipulation de documents sont génériques. En effet, qu’il s’agisse

deRI, de classificationoud’étiquetage, lesmêmes traitementspeuvent

être accordés à des images, des publications scientifiques, des gènes,

etc. Il est possible, dans ces approches,de faire abstractionducontenu

des documents et la perte d’information due à ce choix semble com-

pensée par la qualité apportée par l’utilisation d’une base de connais-

sances. Bien sûr, cette généricité n’empêche en aucun cas de réaliser

des méthodes hybrides en enrichissant une approche générique avec

une autre plus spécifique.

3. Analyser la place de l’opérateur humain dans le processus.

Nos solutions visent à assister l’opérateur humain confronté à une

situation faisant appel à de hautes compétences cognitives. Ainsi la

place de l’expert reste un point clé de notre approche. Sans désir de

se subsister à lui, les différents traitements que nous proposons se

doivent d’être très fiables et d’apporter rapidement une réponse perti-

nente à ses attentes. C’est pourquoi notre évaluation tient systémati-

quement compte des experts : soit pour vérifier que l’interaction avec

le système est adaptée à son contexte (des tests plus poussés avec des
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ergonomesdevront être envisagés), que la pertinence des résultats est

équivalente à celle produite par un humain, soit par l’étude du gain

de temps occasionné par l’introduction de traitements automatiques

dans un processus par exemple d’indexation.

4. Produire des approches algorithmiquement efficaces.

Ce manuscrit s’attarde sur les aspects algorithmiques des approches

réalisées pour valider leur pertinence dans un contexte où le volume

dedonnées est très important.Nousavonsdémontréque les approches

sémantiques n’empêchent pas un passage à l’échelle.

Ces conclusions apportent de nouvelles interrogations, ouvertures et pers-

pectives. Tout d’abord, même si USI a été conçu et développé comme une

approche générique, nous n’avons pas pu tester sa pertinence dans tous

les domaines. Un effort a été réalisé concernant l’indexation d’articles bio-

médicaux, motivé par le fait qu’une communauté active anime ce champ

d’application. D’autres cas d’utilisations ont été étudiés dans ce manus-

crit comme une indexation de films, mais aucune évaluation formelle n’a

été faite à ce niveau. Il serait très intéressant de tester, par exemple, cette

approche pour l’annotation sémantique de gènes, en se basant sur leurs

séquences génétiques pour récupérer les gènes voisins.

Deplus, l’utilisationdes bases de connaissances commeélément central de

nos approches limite leur application puisqu’elle suppose de disposer d’un

modèle de connaissance et de documents annotés sémantiquement avec

cemodèle. Cette limite est àmodérer cependant puisque de plus en plus de

telsmodèles sont disponibles. Aumême titre que nous proposons toujours

le code source, les jeux d’évaluations et les résultats, ces efforts devraient

être poursuivis. Nous avons trop de fois été confrontés au manque de don-
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nées nous empêchant de nous comparer à l’existant, ou simplement de va-

lider une approche, alors que l’idéologie même duWeb Sémantique est de

partager et réutiliser les données4.

Enfin, puisque BioASQ fédère les dernières contributions dans le domaine

de l’indexation automatique de papiers biomédicaux, il est possible de con-

naître les méthodes qui ont permis les meilleurs résultats au challenge.

Bien que nous ayons adapté USI au contexte du challenge, nous n’avons

pas utilisé toutes les donnéesmises à disposition (titre, résumé de publica-

tion, auteurs...). Nous supposons dans le manuscrit qu’enrichir USI avec

des approches d’apprentissage automatique, de traitement automatique

des langues ou de classification permettrait d’améliorer la qualité des an-

notations. Cependant, cela reste encore à prouver et constitue une réelle

perspective de recherche.

4The Semantic Web provides a common framework that allows data to be shared and reused across applica-
tion, enterprise, and community boundaries, http://www.w3.org/2001/sw/
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Short abstract

In order to improve the search anduse of documents, Artificial Intelligence

has dedicated a lot of effort to the creation anduse of knowledge bases such

as ontologies. They are graphs in which nodes represent ameaning unit—

a concept—and edges are their relationships. For example, this allows to

represent the concept “dog” as a subclass of the concept “mammal”. In-

dexing documents is a useful process for further processing and consists of

associating them with sets of terms that describe them. These terms can

be concepts froman ontology, inwhich case the annotation is said to be se-

mantic. Such annotations benefit from the inherent properties of ontolo-

gies: the absence of synonymy and polysemy. Most approaches designed

to annotate documents have to read them and extract concepts from this

reading. This means that the approach is dependent from the type of doc-

uments, as a text would not be processed the same way a picture or a gene

would be. Approaches that solely rely on semantic annotations can ignore

the document type, leading to generic processes. This has been proved

in Information Retrieval where researchers experienced approaches called
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semantic information retrieval that can fit any type of document.

This thesis capitalizes on genericity accessible through semantic anno-

tations to build novel systems and compare them to state-of-the-art ap-

proaches. To this end, we rely on semantic annotations coupled with se-

mantic similarity measures. Of course, such generic approach can then

be enriched with type-specific ones, which would increase the quality of

the results. Thiswork explores the relevance of this paradigm for indexing

documents. The idea is to rely on already annotated close documents to an-

notate a target document. We defined a heuristic algorithm for this pur-

pose that uses the semantic annotations of these close documents and se-

mantic similarities to provide a generic indexingmethod. This resulted in

USI (User-oriented Semantic Indexer) that we showed to perform aswell as

best current systemswhile being faster. This idea has been extended to an-

other task, clustering. Clustering is a very common process that is useful

for finding documents or understanding a set of documents. We propose a

hierarchical clustering algorithm that reuses the same components of clas-

sical methods to provide a novel one applicable to any kind of documents.

Another benefit of this approach is that when documents are grouped to-

gether, the group is annotatedbyusing our indexingalgorithm. Therefore,

the result is not only a hierarchy of clusters containing documents as clus-

ters are actually described by concepts as well. This helps a lot to better

understand the result of the clustering. A particular attention has been

devoted in this work to algorithmic optimization and user-friendliness,

with interactive human-machine interfaces, that take into account im-

precision of human actions.

This thesis shows that apart from improving the results of classical ap-
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proaches, building conceptual approaches allows us to abstract them and

provide a generic framework. Yet, while bringing easy to setup meth-

ods—as long as documents are semantically annotated—, genericity does

notpreventus frommixing thesemethodswith type-specificones, inother

words creating hybrid methods.
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1.1 v General context

Artificial Intelligence is the building of computer programs which perform tasks which

are, for the moment, performed in a more satisfactory way by humans because they

require high level mental processes such as: perception learning, memory organization

and critical reasoning.

—Marvin Lee Minsky

1.1. General context

The above definition of Artificial Intelligence (AI1) by Marvin Lee Minsky,

one of its creators, shows the wideness of the field that can be perceived

through thediversity and theabstractionof thehumancognitiveprocesses

AI tries to perform. Russell and Norvig (1995) classify AI into four cate-

gories: thinking humanly, acting humanly, thinking rationally and act-

ing rationally. These are the trends that have existed—and still exist—in

AI with their respective objectives. A rational system seeks to provide the

best solution while others seek to mimic the Human. They also differenti-

ate the process of acting, e.g. communicating, from that of thinking, e.g.

reasoning.

The processes involving AI can thus be discrete such as the recommender

systems—think of Amazon—, or, on the contrary very obvious like a chess

playing program. This shows again the diversity of AI in terms of use, goal

and implementation: playing chess seems intuitively very different from
1A comprehensive list of abbreviations used in this thesis is available in Appendix A.1
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chapter 1 v Introduction

recommending a product to a user. However, the foundations of those two

are quite similar as they are built upon key pillars of AI. Themost obvious

certainly isMachine Learning (ML), which is a whole AI domain that aims

at building models out of several sources in order to make predictions or

decisions. Instead of relying on a model or rules created by a human, the

system learns from examples and experiences with a set of features that

are considered important by the human. The idea behind it is that the sys-

tem will converge towards human-like predictions or decisions when the

number of examples and experiments increases. Eachmethod has its own

specifications, the so-called SVM (Support Vector Machine) excels in divid-

ing an input space into two regions and L2R (Learning to Rank) is best for

ordering the data, to cite a few. While ML approaches are touted for offer-

ing scalable solutions and generally good results, they require a learning

phase for which the behaviour of the predefined features can be observed

to model the problem.

This PhD thesis seeks to study methods that are not based on ML. Indeed,

inmanyfields like thosewe focus on (see thenext sections), approachesdif-

fer froma few learned features and slightly differentML algorithms lead to

slightly different results. However, some of these fields can benefit from

the availability of Knowledge Representations (KR), which should, in the-

ory, improve the quality of the results provided by the systems, e.g. by

being able to infer better predictions. At least, such approaches would be

novel and it would be worth studying how they behave compared to clas-

sical ones. The few goals we set are to find out how to best use KRs, how

they can be useful and to compare themwith state-of-the-art classical ML

implementations.
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1.2 v Information retrieval, indexing and clustering

Globally, this thesis project falls within the scope of Information Retrieval

as we concentrate on two related domains: indexing and clustering. The

next sections thus present these fields and their stakes before describing

the benefits and uses of knowledge-based systems. Once this basis has

been set, we explain the objectives of the thesis in more detail and its out-

line.

1.2. Information retrieval, indexing and clustering

Nowadays, many tasks we rely on are based on AI systems. In fact, ev-

erything is called smart. We have smartphones, we (will) live in smart

homes that (will) belong to smart cities. Themost famous AI process in our

daily habits is certainly Information Retrieval (IR), usually represented by

Google or Bing search engines. Accessing information is so frequent and

easy that our way of thinking has changed (Sparrow et al., 2011). That is,

instead of remembering the actual information, we remember how to ac-

cess it: withwhichkeywords, onwhichwebsite, etc. The Internet became,

in some way, an external storage of our memory. This section provides a

short overview of IR and its relationship with indexing and clustering.

1.2.1. The Information Retrieval field

In their so-called book, Baeza-Yates and Ribeiro-Neto (1999) point out that

Modern Information Retrieval “deals with the representation, storage, organization

of, and access to information items”. “Information item” is soon replaced by “doc-

ument”, which is an important recurring word in this thesis that needs to

5



chapter 1 v Introduction

Information Retrieval System (IRS)

Information
need

Indexing

Query CorpusMatching

Relevance computation

Results ordered by relevanceDisplay

Figure 1.1.: Classical process of IR.

be defined. We refer to it the sameway as the Oxford Dictionaries: “A piece

of written, printed, or electronic matter that provides information or evidence or that serves

as an official record”2. A document can thus be a scientific paper, a video or

a gene sequence, to cite a few. All of them present the same properties of

providing information while being stored electronically.

The proposed IR definition shows how wide the field is, which explains

why an entire book is dedicated to it. However, the process of IR can be

easily summarized by the Figure 1.1. A user expresses an information need

as a query and submits it to the IR system (IRS). The IRS relies on a cor-

pus of documents that it uses to find the ones to return to the user. To

this end, it matches the query with them and associates each document

with a relevance score. Matching is different in essence from associating

a score since, for reasons of efficiency, not all documents of the corpus are

scanned and scored. Instead, the index, such as an inverted file (see the

2http://www.oxforddictionaries.com/definition/english/document?t=1, as of Novem-
ber 9, 2015
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1.2 v Information retrieval, indexing and clustering

next section on indexing), provides a simpleway to findmatches first, and

then computing relevance scores. Results are ordered according to this rel-

evance score and displayed to the user. A crucial step for the matching is

the indexing of documents as it allows the IRS to retrieve the potentially

relevant documents quickly. Even if this Figure is very simple to under-

stand, each step is the result of an extensive research. To name a few, the

transformation of an information need into a query is helped by the query

expansion field; computing relevance of the documents depends onmany

factors that resulted inmanymodels; and thedisplay of results canassume

many forms (e.g., ordered list, synthetic semantic map), each achieving

a different goal.

Indexing appears to be a fundamental element in IR pipelines. In fact, it

is crucial to allow the matching with the queries in a reasonnable time

as it provides a logical representation of the documents that compose the

corpus.

1.2.2. A need for indexed documents

The assessment of the relevance of each document is the most important

step as it directly impacts the results. Therefore, many models have been

proposed in the literature to improve the quality of IRSs, formost of which

the index is at the basis. Indeed, the representation of the documents in

the index is usually a set of keywords which are used for matching the

query with the documents, but also to compute the relevance faster than

by using the whole document.

The index is what is called an inverted file that is defined as follows. Con-
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sider a corpus D3 of three documents d1,d2,d3 ∈ D. Each document is

associated with a set of terms Tdi that represent it so for example Td1 =

{t1, t2},Td2 = {t1, t3},Td3 = {t1, t2, t3}. Building an inverted file consists in

mapping the documents to the terms, in this case:

t1 = {d1,d2,d3}

t2 = {d1,d3}

t3 = {d2,d3}

By using an inverted file, matching a query with the corpus ismuch faster

as we do not have to browse all documents to find those that are annotated

with the terms corresponding to the query. We just need to get the docu-

ments associated to the keys that correspond to the query terms.

In order to avoid confusion, let us clear up some terms that are com-

monly used throughout this thesis. The fact of associating words—

or, further on, concepts—with documents is usually called annotat-

ing. These annotations are then used to build up an index for an IRS,

by following the process illustrated above through an example. The

most important part is thus the actual association onwhichwe focus

and not its implementation in IRSs, so following many authors, we

denote this association by indexing or annotating interchangeably.

As an example of the use of the index, let us take the most simple model

for IR, the boolean model (Lancaster and Gallup, 1973). Classical boolean

3A list of important and commonmathematical notations is provided in Appendix A.2
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operators—AND (∧), OR (∨) andNOT (¬)—are used in queries tomake a log-

ical representation of the user need. For example, consider the following

query q = t1 ∧¬t3. In this case, d1,d2,d3 are potential matches but only the

document d1 perfectly satisfies the logical representation. The relevance

score is binary, which means it is 1 if the document annotation satisfies

the boolean expression, 0 otherwise. Such an approach cannot propose an

ordered list of results (apart from a list containing documents with a rel-

evance of 1 first) and is limited in most contexts where we do not need a

query as strict as a logical representation.

While the boolean model relies on the set theory, two other paradigms

have been at the origin of many models: algebra and probability theories.

The vector models (Salton et al., 1975) rely on algebra and need weighted

termvectors for the query and the documents. They consist ofweights that

correspond to the terms annotating the documents or in the query. The

similarity of two vectors can then be calculated by using algebraic func-

tion such as the cosine similarity. The probabilistic models (Maron and

Kuhns, 1960; Robertson et al., 1995) model the probability of a given doc-

ument to be relevant w.r.t the query. The elementary probabilities that

are used in those models are estimated by learning from a set of examples.

Boolean, vector and probabilistic models all highly rely on the index, that

is the correspondance between each document and a set of terms. Some-

times a weight or frequency is also associated with the terms to refine the

relevance scores, but the actual association of document-terms is therefore

crucial in IR.

9
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1.2.3. The importance and use of clustering

Clustering is useful for organizing documents and often allows for a bet-

ter understanding of the underlying nature or meaning of data. Let us

consider the whole set of articles of a newspaper in the last 10 years. An

interesting study is to understand the trends of this newspaper: does it

emphasize politics, sport, local news? Clustering the articles gives a good

idea of these orientations. Biologists also frequently cluster genes to iden-

tify biological processes involved in molecular response to a change of en-

vironment. By storing the expression data of hundreds of genes in differ-

ent environments—or after different stimuli—, they cluster these genes ac-

cording to their expression patterns. The function of someunknowngenes

can appear to be part of the same metabolic pathway as the other known

ones, for instance.

The whole point of clustering is to find groups of similar items that are dif-

ferent from other groups. As a result, the definition of a distance metric is

the most important choice in clustering (Manning et al., 2008). Cluster-

ing methods are numerous and depend on the type of data: numeric val-

ues and textual ones are compared differently. Different algorithms may

lead to different clusters as they comewith different requirements and ob-

jectives. If you need a hierarchical representation of classes, you will use

hierarchical clustering (e.g., in systematic biology where you need a phyloge-

netic tree); if you have a predefined number of clusters you will opt for k-

means (e.g., youwant to find the 5main topics of a newspaper), and so on.

The distance measures implicitly determine the feature(s) you will use for

clustering the documents. However, note that several distance measures

can rely on the same features, while providing a great diversity of output

10
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clusters. Manning et al. (2008) also point out that there are two important

paradigms called soft and hard clustering. The former aims at providing for

each document a probability distribution over the classes, while the latter

assigns each document to one class only.

The Figure 1.2 illustrates the usual k-meansmethod that follows Lloyd’s al-

gorithm (Lloyd, 1982) to better understand the stakes of clustering in gen-

eral. This approach proposes to identify k clusters among a set of items.

It all starts by randomly defining k points as cluster means (1). Then, all

items are assigned to the closest mean (2). The new means are computed

regarding the items identified in each cluster (3). Assignment of items (2)

and recomputation of themeans (3) is done repeatedlyuntil themeans stop

changing (4), k clusters are identified.

As we are facing an increasing volume of data, clustering appears to be a

very advantageous course of action in many fields. Recently, in IR, some

effort has been devoted to result diversification, motivated by a few objec-

tives. We have all faced this problem one day, where all results of a search

are literally the same ones. In fact, Clarke et al. (2011) even make the as-

sumption that the first results of a search have good odds to be very similar

to other searches. In this case, if the solution to the need is not in the

first result, we have to crawl among the result pages to find something of

interest with difficulty. Clustering is one solution among others for diver-

sifying the results (Gollapudi and Sharma, 2009). The idea is to cluster the

results so that groups of results emerge. These groups can represent dif-

ferent aspects or meaning of the topic. For example for the query “nuclear

powerplant”, results could begrouped in ecological, political and energetic

aspects. In order to diversify the results, once the clusters have been iden-

11



chapter 1 v Introduction

Figure 1.2.: Visualization of k-means method with k = 3. Step (1) corre-
sponds to identifying cluster means at random. Step (2) asso-
ciates each item to the closest mean. Step (3) recalculates the
clustermeans according to their associated items. Step (2) and
(3) are repeated until the means stop changing (4).
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1.2 v Information retrieval, indexing and clustering

tified, the system can for example display the most relevant document(s)

of each cluster to increase the user’s satisfaction. Some authors argue that

it also allows to overcome ambiguity (Agrawal et al., 2009; Skoutas et al.,

2010) by automatically identifying the meaningful groups of documents

associated to a query, since ambiguous words such as “Jaguar”, “Java” or

“Flash” may hamper IRSs a lot.

Finally,Manning et al. (2008) andRole andNadif (2014) bothhighlight that

the labelingof clusters is an important stepwhen the categories arenotpre-

defined. The labeling consists in associating a description to the clusters

that are created, which seems related, if not similar, to document annota-

tion. Theonly difference lies in the fact thatweneed to annotate a group of

documents instead of only one. That is, identifying the reason why docu-

ments have been gathered in a same cluster. The application of this task in

IR as an example is for subtopic retrieval. Bernardini et al. (2009) provide a

screenshot (see Figure 1.3) of their system in which the query is “artificial

intelligence”. Apart from the results for this query, labeled clusters of doc-

uments are presented, containing, for example, “computer science”, “ar-

tificial intelligence research”, “johnmccarthy”, “science and technology”,

etc. Automatically labeling these clusters is tremendously useful for the

user who can refine his/her query.

Although we decided to use the terms “indexing” and “annotating”

interchangeably, we think that “labeling” has a different meaning

and it is used accordingly in this thesis. When clusters are labeled,

the labels are supposed to be quite abstract (they represent the con-

tent of the whole cluster) but most of all they should be composed of

13
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Figure 1.3.: The system of Bernardini et al. (2009) provides labeled clusters
on the left to refine the query.
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a few words to be instantly understood by the user. There is thus a

divergence of objectives: while indexing aims at associating a sharp

set or terms to a document, labeling seeks to give the big picture of a

cluster. “Concision” is another term used in two different contexts

in this thesis. When referring to “annotating”, concision impacts

further automated processes whereas when associated with “label-

ing” it seeks to make the label easily understandable.

1.3. The trend of knowledge-based systems

Intuitively, it seems that knowledge is at the basis of any intelligence and

thereby of AI. As explained in the general context section, this thesis deals

with the use of knowledge in indexing and clustering tasks in order to Fig-

ure out the pros and cons of such approaches compared to more classical

ones. This section thus aims at laying the foundations of knowledge as it

is used in knowledge-based systems.

Russell and Norvig (1995) explain that the so called Turing test requires,

among other things, a Knowledge Representation (KR). Indeed, we have

to know things if we want to infer conclusions. The KR is thus the storage of

information that a machine would use to pass the Turing test. They also

declare that “all the skills needed for the Turing Test also allow an agent to act rationally,

Knowledge Representation and reasoning enable agents to reach good decisions”. Many

definitions of KR have been proposed in the literature, one of which the

ontology is a famous formal representative (Harispe et al., 2015b; Sy et al.,

2012).

15
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A knowledge-based system is therefore a system that makes use of a KR.

In several fields, for instance in biomedicine, the presence of knowledge

is crucial for the systems to analyze, process, and organize the documents

(Ben Abacha and Zweigenbaum, 2015). Recently, a lot of effort has been

invested into the creation of such KRs, particularly in the biomedical field

which requires a high level of expertise and accuracy (Smith et al., 2007).

It seems obvious that the stakes of systems in this field are high asmedical

decisions or diagnoses may depend on them. As a result, the researchers

mainly decided to rely on KR in a quest to improve the quality of their sys-

tems and therefore focused on semantics.

1.3.1. Inferring from knowledge bases

The idea of a Semantic Web emerged from Tim Berners Lee who defined

it as a Web understandable by machines as well as humans. The idea is to

enrich the currentWebwith knowledge that computers can process, there-

fore enhancing or facilitating the use of the Internet (Berners-Lee et al.,

2001). This paradigm is criticized on the grounds of feasibilitymatters and,

so far, the Semantic Web per se is nonexistent. However, there exist many

proofs of the use of relying on a knowledge-enriched system in specific do-

mains.

IR has been experienced with the use of KRs and results show a clear im-

provement compared to term-based approaches (Haav and Lubi, 2001). The

main problem exposed regarding classical approaches is that they suffer

from synonymy. As an example, a query containing “tumor” may lead

to different results from that of “carcinoma”, although the terms are syn-

onyms (Giunchiglia et al., 2009; Bhagdev et al., 2008). Stokoe et al. (2003)
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explain that ambiguity can also hamper these approaches because even

when the query and the results perfectlymatch, themeaning in eachmay

be different. Besides the terms ambiguity, another downside is the lack of

connection among the terms in general. When we think about the terms

“dog” and “cat”, we imagine a sort of connection between them. Both are

domestic animals, mammals, and the cartoons we used to watch in our

childhood stressed enough that dogs do not like cats. Those connections

we know about cats and dogs are not grammatical (i.e. the words cat and

dog are not grammatically related) and refer to something that is not lan-

guage but knowledge. Then, when a system has the ability to consider

some knowledge, such connections, it can outperform classical methods

in some cases by retrieving documents that better suit users’ needs. Imag-

ine, for example, that there is no perfect match for a given query: docu-

ments that are indexed by close terms—i.e. connected to the ones of the

query by knowledge—might consitute a good result to be proposed instead.

In order to better understand how knowledge is used in those systems, let

us define the terminology and the mathematical objects that will be used

throughout this thesis.

1.3.2. Terminology and formal definitions

As pointed out by Sy et al. (2012) (in French), the literature is sometimes

confused with the use of knowledge-related terms. Although we do not

pretend to exhaustively describe each term and its limits, the following

gives an overview of the scope of our work regarding KR.
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1.3.2.1. Vocabulary, taxonomy, thesaurus and ontology

Vocabulary, taxonomy, thesaurus and ontology all are KRs. What differs

among those KRs ismainly the degree of formality of their definitions and

their richness. The vocabulary, also referred to as controlled vocabulary,

is not formal and simply proposes to explicitly enumerate the terms in

an unambiguous and non-redundant way called concepts. This suggests

that each concept is unique and has only one meaning within this model.

The taxonomy is built upon the vocabulary by adding a hierarchy, that is,

parent-child relationships representing the idea of generalization and spe-

cialization (the concept mammal is more abstract than the concept cat).

The thesaurus enriches the taxonomyrepresentationbyaddingother kinds

of relationships, such as related_to. The ontology differs by its richer formal-

ism and expresses axioms and restrictions (Staab and Studer, 2013). Even

though these differences have a great impact on the creation of KRs, it is

important to note that they are usually less consideredwhen these KRs are

used in IR. In other words, the degree of formality mostly matters for the

creatorswhohave to respect it, not directly for theusers except through the

efficiency and relevance of the results of their systems or the operations al-

lowed with the chosen KRs.

Formally, Maedche and Staab (2001) proposed a definition of an ontology

that can be derived as follows (Sy et al., 2012).

Definition 1 Ontology: An ontology θ is defined as θ = {C,R,HC,Rel,Ax} such

that:

• C is a set of concepts;
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• HC is a taxonomy organizing the concepts C with multiple inheritance;

• R is a set of nontaxonomic relations described by their domain and range notation;

• Rel : R× C × C → {0; 1} associates each non-taxonomic relation with the pairs

of concepts satisfying this relationship. Say r ∈ R is a non-taxonomic relationship

and (cx, cy) ∈ C2 are two concepts, then Rel(r, cx, cy) = 1 if there exists a non-

taxonomic relationship r between them,Rel(r, cx, cy) = 0 otherwise;

• Ax is a set of axioms that describe additional constraints on the ontology to infer im-

plicit facts.

As Harispe (2014) notes, the hierarchy HC formally expresses the relation-

ship of concepts as it is a non-strict partial order of C. It defines the binary

relation⪯ over C, which is

• reflexive: ∀c ∈ C, c ⪯ c,

• antisymmetric: ∀u, v ∈ C, (u ⪯ v ∧ v ⪯ u) =⇒ u = v,

• transitive: ∀u, v,w ∈ C, (u ⪯ v ∧ v ⪯ w) =⇒ u ⪯ w.

All thenotations relative to thedefinitionon theontologyare kept through-

out the thesis. Now that a specific KR has been formally defined, let us

explain how it is intensively used in our projects.

1.3.2.2. An overview of similarity measures

The human mind has the innate ability of comparing concepts. In fact,

comparing is at the basis of many operations such as learning. When one

encounters a situation similar to a previously encountered one, the user
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can detect the similarity with the previous experience and use the knowl-

edge acquired the previous time to solve the new problem (Holyoak and

Koh, 1987). Therefore AI extensively exploits algorithms that are able to as-

sess similarities between “entities” in decision processes, recommender sys-

tems or information retrieval systems, to cite a few.

The field of similarity measures (SM) is wide and has been subject tomany

contributions (Harispe et al., 2014b), pursuing the idea that computing

similarities of pairs of concepts is crucial in order to mimic the human

thinking. This thesis focuses on graph-based SMs, i.e. SMs that assume

that a graph-based KR is available for a given domain—vocabularies and

corpus-based measures are thus not concerned. This section aims to pro-

vide an insight intowhatwe call similaritymeasures and some of their def-

initions. A more comprehensive work on this topic is available in Harispe

et al. (2015b).

There are two ways of comparing concepts through a semantic measure

in the light of relationships that have been defined or that can be assessed

fromgraph-based KRs. Thefirst one is semantic similarity, the second one

is called semantic proximity or relatedness. Semantic Similarity (SS) mea-

sures are often associatedwith the substituability property (themore a con-

cept can be substituted by another, the more they are similar). They only

exploit taxonomic relationships HC of the KRs. Semantic proximity or re-

latednessmeasure, on the other hand, are associated with conceptual evo-

cation: givena concept,what other concepts come tomind (Pedersen et al.,

2007). For instance, nail evokes hammer, toothbrush evokes tooth or

toothpaste. To this end, the semantic proximity or relatedness uses the

whole set of relationships {HC,R} provided by an ontology. Harispe et al.
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(2015b), following the work of Resnik (1999) and Pedersen et al. (2007) thus

define semantic proximity and similarity as follows.

Definition 2 Semantic proximity or relatedness: the strength of the seman-

tic interactions between two elements with no restrictions on the types of the semantic links

considered.

Definition 3 Semantic similarity: subset of the notion of semantic relatedness only

considering taxonomic relationships in the evaluation of the semantic interaction between

two elements.

In order to compute the SS of two nodes (i.e., concepts) belonging to a

graph such as an ontology, several directions have been tried out. Graph

traversal is oneof themandcomes fromthegraph theoryfield. Theshortest-

path is a famous problem that has been exploited and adapted to SSs by

Rada et al. (1989), while Fouss et al. (2007) chose to rely on a random walk

strategy. Graph-based measures that use the whole set of relationships

provided by the graph are called proximity measures. Semantic similarity

measures (SSM) are restricted to the is_a relationship and need an acyclic

graph instead that is provided by the restriction of the Definition 4 below.

Let us thus define the restriction of the ontology from Definition 1 applied

to obtain θTax, the directed acyclic graph that allows us to use most of the

SMs.

Definition 4 The taxonomy (Tax) restriction θTax of an ontology θ is defined as θTax =

{C,HC}.
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Since the thesaurus differs from an ontology by the absence of Ax, the

same restriction may be applied when a thesaurus is used. That is, say

ω is a thesaurus such as ω = {C,R,HC,Rel} and θ = {C,R,HC,Rel,Ax} is

an ontology, then ωTax = θTax = {C,HC}.

Although it has been explained that the SSMs we use rely on taxonomic

relationships, we still need to describe how this taxonomy is used to assess

the similarity of a pair of concepts.

1.3.2.3. Information Content

The SSMs our work uses are based on Information Theory, which implies

the definition of an Information Content (IC) function that aims at express-

ing the amount of information conveyed by a given concept. Those ICs fol-

low the guidelines of Shannon’s information theory (Shannon, 1948), i.e.

themore likely a concept is to be used, the less informative it is. From this

paradigm, two main classes of ICs emerged: intrinsic and extrinsic ICs.

Intrisic ICs solely rely on the graph structure (i.e. the KR model) while ex-

trinsic ones also consider a corpus of texts associated with the KR. In 1995,

Resnik (Resnik, 1995) proposed an extrinsic IC, here denoted by ICResnik(c),

based on the probability p(c) of encountering an instance of concept c de-

fined as follows.

p(c) =
I(c)
|I|

(1.1)

I(c) is the set of instances of c, that is to say the number of occurrences of

c in a corpus or in a KR—represented by c itself and its descendants. |I| is

the total number of instances of all concepts in the corpus. Then,
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ICResnik(c) = −log(p(c)) = log(|I|)− log(I(c)). (1.2)

Therefore with this definition, say root is the concept at the root of the KR,

p(root) = 1 so ICResnik(root) = 0 and the value increases when the concepts

are less represented in the corpusor in theKR, i.e. when theybecomemore

specific.

Although such an IC captures the specificity of concepts from several sour-

ces (KR, corpus), it may suffer from inconsistencies between the corpus

and KR data. In other words, the corpus should have a wide coverage of

the domain and not be composed of documents that focus on one part of

the KR for instance. Otherwise, the representation of a given concept in

the corpus and in the KR may diverge, which would lead to discrepancies,

e.g. a very specific concept in the KR that appears frequently in the cor-

pus. In some cases, considering these inconsistencies might be desired,

but inmost cases intrinsic ICs are good estimators instead. As an example,

Seco’s IC (Seco et al., 2004) is calculated by using the descendants of a given

concept c ∈ C:

ICSeco(c) =
log( |desc(c)||C| )

log( 1
|C|)

= 1− log(|desc(c)|)
log(|C|)

, (1.3)

where desc(c) is a set containing c and all of its descendants and C is the set

of concepts of an ontology. This function is bounded on an interval [0; 1]; it

behaves like extrinsic ICs: themore specific the concept, the higher the IC

value. The other ICs used in our work (Sánchez and Batet, 2011; Zhou et al.,

2008;Harispe et al., 2015a) all satisfy thesepropertieswhile providing some

23



chapter 1 v Introduction

other specificities. For instance, Zhou et al. (2008) propose to consider both

the depth of a concept and the number of its descendants to assess its IC.

Now that the information concepts convey has been defined, let us explain

how it is used in IC-based SSMs.

1.3.2.4. IC-based semantic similarity measures

The idea behind IC-based SSMs is to model the similarity of two concepts

by relying on the amount of information they carry and their similarity

according to the KR. For example, let us take two pairs of concepts that

are equally distant in terms of path in the graph (see Figure 1.4). The pair

of less specific concepts (e.g., {bird, monkey}), i.e. with a low value of IC,

shouldhave a lower similarity value thepair ofmore specific concepts (e.g.,

{grapefruit, persian lime}). This rule refines the definition of shortest

path similarity measures solely based on the taxonomy. Here, the short-

est path is coupled with the specificity of the pair of compared concepts so

that the similarity of {monkey, bird} is different from that of {grapefruit,

persian lime}.

Resnik (Resnik, 1995) is the first to implicitly define the MICA notion that

stands forMost Informative CommonAncestor. TheMICA is away to repre-

sent the shortest path of two concepts in a DAG. Bymaximizing an (extrin-

sic) IC function, he proposed to compute the similarity of a pair of concepts

by calculating the IC of the MICA:

simResnik(c, c′) = IC(MICA(c, c′)), (1.4)

where c, c′ are two concepts. The drawback of such calculation is that some
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thing
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Figure 1.4.: Identical path distance of two pairs of concepts should lead to
different values of similarity that take into account the speci-
ficity of the pair of concepts.

pairs of concepts would have the same similarity whereas they should not.

By assuming the partial order provided by the taxonomic relationship is_a

of an ontology, let us assume c′ ⪯ c, where the concept c′ is a subclass of

the concept c according to the definition of the hierarchy HC. In Figure

1.4, mammal ⪯ animal,monkey ⪯ mammal, bird ⪯ animal. In this case,

simResnik(monkey, bird) = simResnik(mammal, bird), while we expect that

sim(mammal, bird) > sim(monkey, bird).

Inorder to tackle this issue,manyauthors like Lin (1998) proposedenhanced

functions. Lin’s SSM, the most used SSM in this thesis, is defined as fol-

lows.

simLin(c, c′) =
2× IC(MICA(c, c′))
IC(c) + IC(c′)

(1.5)

As a result, the similarity depends on the IC of the MICA and the individ-
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ual ICs of the compared concepts. The Lin measure is extensively used in

our work because it is said to be a neutral measure as compared to some

other proposals that meet different requirements that we do not cover in

this thesis. For example, the Lin measure respects the property of iden-

tity of the indiscernibles that consists in assuming that if the compared

concepts have exactly the same properties, then they are identical and the

similarity should thus be maximal. That is to say, for two concepts c, c′,

simLin(c, c) = simLin(c′, c′) = 1—except for the root because its IC is 0. In

some case, one may prefer the non-respect of this property, leading to the

choice of a less neutral SSMas in (Schlicker et al., 2006). Note thatwe study

the impact of the choice of several SSMs by relying on an abstract frame-

work that can instantiate many of them in §2.6.2.

So far, we described the pairwise semantic similarity measures but we of-

ten have to compare two groups of concepts. Two strategies have been fol-

lowed, called direct and indirect groupwise semantic measures. The for-

mer consider the sets of features of both sets of concepts while the latter

aggregate individual pairwise values. The Jaccard index for example may

be applied to create a direct groupwise SSM (Gentleman, 2010). Let us de-

fine the set anc(c) that corresponds to c and all of its ancestors. Say A,B

are two groups of concepts and A+ =
∪
c∈A anc(c),B

+ =
∪
c∈B anc(c). The

semantic similarity of A and B can be computed by

simJaccard(A,B) =
|A+ ∩ B+|
|A+ ∪ B+|

. (1.6)

Despite the fact that some other works propose direct groupwise semantic

similaritymeasures (Pesquita et al., 2007; Mistry and Pavlidis, 2008), they
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are all hampered by a higher computation time than for indirect ones. In-

deed, for any application, thewhole list of pairwise similarities can be pre-

computed and stored for a given ontology. Then, accessing these similari-

ties is in constant time and only the aggregationhas to be computed. Addi-

tonally, indirect approaches may offer possibilities for optimizations. For

example, sim({ca, cb}, {cc, cd})mustnot be very different from sim({ca, cb},

{cc}) if this similarity is based on an arithmetic mean of pairwise values.

Thismeans that whenwe need to computemany groupwise semantic sim-

ilarities, we may not have to recompute the whole aggregation but derive

it from another already computed similarity, therefore, our choice was to

go with indirect SSMs. Apart from classical aggregators (minimum,maxi-

mum, arithmeticmean, geometricmean…), a fewmore refined oneshave

been proposed (Schlicker et al., 2006; Pesquita et al., 2007). TheBestMatch

Average (Schlicker et al., 2006) is a composite average between two sets of

concepts, here A,B, which we mainly decided to employ throughout this

thesis:

simBMA(A,B) =
1
2|B|

∑
c∈B

simm(c,A) +
1
2|A|

∑
c∈A

simm(c,B), (1.7)

where simm(c,B) = maxc′∈B(sim(c, c′)) and sim(c, c′) is any IC-based pair-

wise SSM such as those detailed previously. It is thus the average of all

maximum similarities of concepts inA regarding B and vice versa. Its defi-

nition is further detailed in §2.4.3.3 along with the several computational

optimizations it allows.
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1.4. Objectives and context of the thesis

So far, this chapter detailed the importance and utility of indexing and

clustering for information retrieval along with the possibilities offered by

KRs, particularly the computation of SSs. Nowadays, IR is not limited to

Google and its concurrents. NCBI, for example, proposes a federated IRS

called Entrez (Sayers et al., 2011) to look for proteins, genes, species or sci-

entific papers. In other words, it relies on several specific—gene-specific,

protein-specific, etc.—IRS to retrieve information out ofmore than 30 data-

bases. This shows that depending on the type of documentswe are looking

for, we use a different IRS that may rely on different paradigms. Themain

difference lies in the features that are considered tomatch a querywith the

corpus. For text-based IR, documents are annotatedwith keywords,where

thequery containswords; for image retrieval, the features are basedonpat-

terns of pixels, where the query may be a picture; etc. The emergence of

such federated systems shows that there is a need formore generic systems

that are able to answer an information need frommany sources. The same

need for more flexible approaches can be identified in the clustering field

as well, as showed by some studies like Chebel et al. (2015), which try to

cluster multilingual documents.

Themain goal of this thesis is to contribute to the field of knowledge-based

systems, especially for indexing and clustering, by promoting the use of

KRs. Although KRs are very well used in several fields, we think they are

not fully exploited. For example in semantic indexing, people usually use

only the concepts for annotating. That is, the methods barely use the tax-

onomy or other relationships of the ontology and prefer to focus on map-
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ping, for example, texts to a set of concepts by using their labels. Despite

the very good results obtained with these approaches, we felt something

was missing.

As indexing and clustering are key processes for many applications such

as IR, we decided to explore the possibilities in these domains. They are

two-fold:

• relying on knowledge representations through the use of semantic

similarity measures might lead to better predictions or decisions,

• using semantic annotations may allow to build generic approaches

instead of creating federated systems.

A whole field of AI is dedicated to the assessment of the similarity of pairs

or groups of concepts by relying on the structure of the underlying ontol-

ogy. Thesemeasures are used in various domains, e.g. IR (Lin andWilbur,

2007) for the computation of the relevance score. The second item is mo-

tivated by the fact that relying on semantic annotations should enable to

create multi-domain approaches. We noted that many methods in differ-

ent fields do the same thing, applied to a slightly different kind of data.

They use the same machine learning algorithms, on nearly the same fea-

tures, to the same aim.

In light of the literature, wewonderwhat impact the use of semantic simi-

laritymeasures has regarding indexing and clustering. In order to answer,

this thesis provides an extended study of the implementation of SSMs

in these processes. It deeply covers the algorithmic aspect of building sys-

tems solely upon SSMs and details an analysis of robustness of a semantic

similarity-based technique towards numerous SSMs. Most of all, the rele-
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vance of an SSM-based indexing system is tested through an international

large-scale indexing challenge.

Our application of this paradigm to the clustering area rose another ques-

tion: how to label the clusters? More generically, is there a difference

between annotating a single document and annotating a group of docu-

ments? If so, to what extent? We propose to deal with this question by

adapting our indexing technique and suggest a semantic summarization

algorithm that aims at factorizing a group of concepts into a meaningful

summary. This approach has been designed and tested in the context of

cluster labeling.

Finally we want to study the role of the user in these two processes. In the

literature, users are requested in the last step of both indexing and cluster-

ing. Therefore we conduct a study on the consequences of (not) relying

on the user by creating fully or semi-automatic approaches and compar-

ing them.

This thesis is an attempt at the creation of generic indexing and clus-

teringapproaches, in tunewithoneof thegoals of the SemanticWeb:

“The Semantic Web provides a common framework that allows data to be shared and

reused across application, enterprise, and community boundaries”4.

1.5. Chapter outlines

This thesis focuses on two areas of research, namely indexing and cluster-

ing. Both of themare investigatedwithin a semantic context: more specif-
4http://www.w3.org/2001/sw/
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ically, by relying on semantic annotations available for the documents and

by using semantic similarity measures. This chapter has broadly intro-

duced these areas and defined the vocabulary, the mathematical objects

and other definitions that will be useful throughout the thesis.

A detailed overview of existing approaches in this chapterwould have been

confusing due to the richness of each explored area. As a result, each chap-

ter starts with a thorough review of the previous works, their upsides and

their limitations.

Chapter 2 is dedicated to the semantic indexing field. We present the com-

prehensiveworkbehindUSI (User-orientedSemantic Indexer). This includes

the definition of objectives, the modeling of these objectives and their im-

plementation by using an optimized heuristic. We also explain the limits

of this approach, particularly the fact of relying on a user, and we propose

several options to tackle them. We conclude by presenting several real-life

applications, one ofwhich is our participation toBioASQ2015, a large-scale

semantic indexing challenge.

Chapter 3 is an extension of the work in Chapter 2. We follow the same

idea of proposing a generic approach for a common task—here, clustering

and cluster labeling—on the basis of semantically annotated documents.

While Chapter 2 shows several direct applications of our approach, this

chapter explores how deeper adaptations can allow to create novel approa-

ches in close fields. To do so, we build a clustering tool for generating a

benchmark for the evaluation ofhierarchical clustering of semantically an-

notateddocuments. We thenevaluate our results byusing this benchmark.

We also expose a more general thought on potential uses of hierarchical

clustering and labeling as we propose it.
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The conclusion chapter ends this thesis by summarizing our contributions

in indexing and clustering. More specifically, it provides more insight

on the impact and utility of the use of semantic similarity measures in

those contexts. It also suggests novel conclusions regarding the creation,

feasability and relevance of generic systems. After detailing the general

limits of our work, the chapter gives some research perspectives in the do-

main of semantic applications, particularly those relying on semantic sim-

ilarities.
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2.1. Abstract

This chapter focuses on the association of documents with semantic anno-

tations which describe them. While the literature proposes ad hoc tech-

niques that are highly dependent of the application context, we build a

generic method that is applicable to any semantic domain. To do so, we

explore the sole use of semantic similarities through our tool, USI.

Contributions related to this chapter

Fiorini, N., Ranwez, S., Harispe, S., Montmain, J., & Ranwez, V. (2015). USI at BioASQ

2015: a Semantic Similarity-Based Approach for Semantic Indexing. InWorkingNotes for

the Conference and Labs of the Evaluation Forum (CLEF), Toulouse, France.

Fiorini, N., Ranwez, S., Montmain, J., & Ranwez, V. (2015). USI: a fast and accurate

approach for conceptual document annotation. BMC bioinformatics, 16(1), 83.

Fiorini, N., Ranwez, S., Montmain, J., & Ranwez, V. (2014). Coping with Imprecision

During a Semi-automatic Conceptual Indexing Process. In Information Processing and

Management of Uncertainty in Knowledge-Based Systems (pp. 11-20). Springer.

Fiorini, N., Ranwez, S., Ranwez, V., &Montmain, J. (2014). Indexation conceptuelle par

propagation. Application à un corpus d’articles scientifiques liés au cancer. In CORIA

2014, COnférence en Recherche d’Information et Applications (p. 187), France.

A generic semantic indexer, USI: http://usi.nicolasfiorini.info

A user-oriented biomedical semantic indexer: http://bio.usi.nicolasfiorini.info

A user-oriented movie semantic indexer: http://movies.usi.nicolasfiorini.info
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2.2. Related work

In Chapter 1, we discussed the growing need for semantic annotations on

which rely many tasks such as conceptual information retrieval or recom-

mendation. Semantic indexing consists of associating concepts from a

knowledge base to documents, thus describing their contents. To face the

overwhelming amount of documents to be annotatedwith concepts of ever

growing ontologies, automated solutions are required. For example, Pub-

Med has been gathering more than 1,000,000 new papers per year since

20111, while the MeSH2 size is growing yearly, reaching more than 27,400

descriptors (or concepts) in 2015. Manually establishing a list of concepts

correctly characterizing a document has always been challenging because

of the expertise required both in the domain of concern and the afferent on-

tologyused to annotate it, but thenumber of documents and the size of the

ontology now make this process almost impossible. In order to automate

the process, many researchers investigated the methods that can suggest

annotations for a document. Those methods rely on document features

that are mostly related to the type of the documents. Some works were

proposed for annotating images (Carson et al., 1999; Zhang et al., 2014),

texts (Jimeno Yepes et al., 2012), audio documents (Turnbull and Barring-

ton, 2008) or videos (Tseng et al., 2008). These studies show how useful

conceptual annotations are for efficient data-driven applications. They all

proceed with the same general steps: (i) analyzing the content of the doc-

ument (through text-mining, sound analysis, sequencing etc.), (ii) map-

ping extracted information to an ontology and (iii) defining among the list

of potential concepts those that are the most relevant.
1http://www.michaeleisen.org/blog/?p=1654
2Medical Subject Headings, the thesaurus used to annotate the papers on MEDLINE
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2.2.1. Extracting concepts from documents

Conceptual approaches have proven efficient in several domains, particu-

larly in the biomedical fieldwhere conceptual indexing is used for informa-

tion retrieval (e.g. to find scientific publications by avoiding ambiguous

terms, to identify protein-protein interactions by comparing gene annota-

tions, etc.). This is why in this domain we observe many ontologies that

have been designed over the last decades (Gene Ontology, Medical Subject

Headings, SNOMED CT, etc.) to annotate a wide range of documents: sci-

entific papers, genes, proteins … However, using ontologies to automati-

cally annotate documents is a difficult task in terms of computing power,

sometimes seen as a fuzzy multi-label categorization problem (Névéol and

Shooshan, 2009). The challenge lies in the fact that selecting the optimal

set of concepts (of unknown size) fromanontology to annotate a document

is, for non trivial criteria, an NP-complete problem that thus requires an

exponential computation time to find an exact solution.

The emergence of a lot of dedicated semantic annotation methods is then

not surprising. MetaMap (Aronson, 2001) is one example, for which the

basic idea is to filter textual contents and map them to concepts of an on-

tology. Obviously, a mapping based on a perfect textual match with the

labels associated to the concepts would not be sufficient because of the pol-

ysemy and synonymy in the language. Aronson (2001) explains that ambi-

guity is the main problem that MetaMap faces. MaxMatcher (Zhou et al.,

2006b) tackles this problemby includingadisambiguationalgorithmbased

on the words that surround the extracted textual content in the text. Jon-

quet et al. (2009) proposed the NCBO3 annotator Web service that can be
3National Center for Biomedical Ontology
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used to annotate texts with concepts from the UMLS4 and NCBO BioPortal

ontologies. The underlying method uses the structure of ontologies it re-

lies on to improve the conceptual annotations of a text. Neves and Leser

(2014) provide a comprehensive survey of concept extraction for biomedical

text documents, including the specificity of each method. Among them,

Machine Learning methods are particularly prominent.

2.2.2. The rise of Machine Learning and its limits

In this semantic indexing context, Machine Learning (ML) is famous for

being able to provide good solutions quickly thanks to the definition of

features and the learning—mostly supervised, in this field— of their be-

haviour on a learning set. Some ML approaches have been applied to the

problem of annotating biomedical papers with the MeSH.

2.2.2.1. Description of ML approaches

The aim, when using ML to index documents, is to find relevant features

to accurately predict concepts representing a given document content. Sev-

eralMLapproacheshavebeenexperimented suchasgradientboosting (Del-

becque and Zweigenbaum, 2010) or Reflective Random Indexing (RRI) (Va-

suki and Cohen, 2010). The choice of the considered features is crucial and

constitutes a key difference in those approaches (see §2.2.2.3).

Delbecque and Zweigenbaum (2010) highlight that co-authoring and cita-

tions contribute to some of the top features of their approach. This work

4Unified Medical Language System
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shows that scientific paper annotations can benefit from co-authoring and

citation information. Some of those features are FreqDistConcept and RefFreq.

The former stands for thenumber of occurrences of aMeSH concept in cited

papers divided by the number of distinct concepts annotating them. The

latter represents the proportion of cited papers in this document annotated

by this concept. Another feature, MeanFreq is the average frequency of a

given concept annotating previous publications of co-authors.

The approach presented in Vasuki and Cohen (2010) is a k-NN (k-Nearest

Neighbors) approach like most hybrid approaches presented in the next

section. They suggest to use an alternative to the Latent Semantic Anal-

ysis (LSA) method called Random Indexing (RI). Let us first explain how

LSA models work in general before exploring their limits and how RI can

overcome them. LSA—or LSI, for Latent Semantic Indexing in the context

of InformationRetrieval—consists of starting froma sparsematrix Fwhere

rowswi representwords and columns cj represent their context, e.g. docu-

ments or phrases where those words appear (Figure 2.1). Each cell Fi,j thus

contains the frequency of occurrence of wi in the context cj. As a result,

F contains a vector of occurrences for each term of the corpus and for each

document (in adocument-based co-occurrencematrix). This allows to com-

pute the similarity of terms-documents by relying on well-known mathe-

matical operations based on vectors such as the cosine similarity. Because

the matrix quickly becomes unusable as the corpus size increases, LSA re-

lies on the Singular Value Decomposition (SVD) approach to factorize F and

to benefit from a smaller matrix size. The main problems of the factoriza-

tion is that it is costly in terms of computation time and it has to be done

each time a new entry is added to the corpus.
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Figure 2.1.: Overview of the Latent Semantic Indexing (LSI). A sparse ma-
trix of terms × contexts is created, each cell containing the
number of occurrences of the corresponding word in the cor-
responding context. It is then factorized by the singular value
decomposition (SVD).This allows for a reduction in size of the
matrix before computing the term-term, context-context or
term-context similarities in a vector space.
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TheRandomIndexing techniquedescribedbySahlgren (2005) consists of as-

sociating a random vector of dimension dwith each context (co-occurring

word or document) that contains a few +1 and −1 randomly distributed

amongmany 0. Each vector thus characterizes a context and these vectors

are summed up for each word, that is for each row of F. Consequently, a

matrix F′ is created, where each word is represented by a context vector of

dimension d. The motivation of RI is to get a nearly orthogonal matrix of

F, as Hecht-Nielsen (1994) demonstrated that in a high-dimensional space,

there are many more orthogonal directions than truely orthogonal ones.

By choosing random directions in the high-dimensional space, one can

thus approximate orthogonality. The dimensionality of the stored data is

thus controled and adding new documents to the corpus only requires to

create a new random vector, sum it to the contexts of words occurring in

it that already exist in F′ and add the new words to F′. This approach bene-

fits from a good scalability while erasing the issues of LSA. Finally, Cohen

et al. (2010) explain that RI fails to derive semantic connections between

words when they do not directly co-occur. For example, if “tumor” and

“carcinoma” do not directly co-occur, RI would not correctly assess their

similarity. Vasuki and Cohen (2010) propose to use a method called RRI,

an iterative version of RI that can learn implicit associations evenwhen the

terms do not directly co-occur. The first step is the same as in RI, i.e. creat-

ing random document vectors. Then, each term is associated with a term

vector that is the sum of all document vectors of documents it occurs in.

RRI uses the term vector to recalculate the document vectors and the term

vectors iteratively. The cosine similarity then allows to compute the sim-

ilarity of documents. Neighboring documents and their associated MeSH

terms are retrieved. Finally, the concepts are ranked according to a score
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that is the sum of similarity between the documents to which they are as-

sociated with the target document (represented by its abstract).

These approaches rely mostly on ML solutions to index documents. Some

authorspropose to combine concept extractionwithMLtoprovide enhanced

annotations.

2.2.2.2. Towards hybrid methods

Concept extraction per se is an interesting idea that can actually be coupled

with other acknowledged approches to annotate documents. The Medical

Text Indexer (MTI) (Aronson et al., 2004) for example is built upon a two-

fold strategy to fulfill this task. During a phase A, it identifies candidate

concepts while in phase B those concepts are associated with a relevance

score and ordered accordingly. This approach is similar with every hybrid

approach, although the method used for each phase may vary.

The phase A of MTI is actually made of a concept extraction tool presented

in §2.2.1: MetaMap. The title and abstract of the paper to be annotated are

given as input to MetaMap to extract UMLS concepts. UMLS being broader

than theMeSH, analgorithm,Restrict-to-MeSH5, is applied to convert this

list into MeSH headings.

MTI enriches the set of identified concepts by using a k-Nearest Neighbors

approach. Indeed we can make an intuitive assumption that documents

that are similar in content in the corpus are likely to be annotated the same

way. Therefore, when annotating a new document, it seems legitimate

to look for similar documents that are already annotated and use those
5http://ii.nlm.nih.gov/MTI/Details/RTM.shtml
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annotations to enrich the set of candidate concepts. PMRA (PubMed Re-

lated Articles) (Lin and Wilbur, 2007) is an algorithm designed to recom-

mend papers to readers of PubMed. This solution is used by MTI to iden-

tify the k-NNs of the considered documents. When someone reads a paper

on PubMed, PMRA proposes a list of similar papers based on a similarity

calculus between articles. This algorithm relies on two metrics. There is a

text similarity basedon the textual content of papers—for example, theuse

of words or keywords—and a semantic similarity of their respective MeSH

annotations. Since the target document provided as input in MTI is not

annotated yet, only the first calculus (text similarity) can be used during

k-NN identification and PMRA has been modified in this way. We further

refer to thismodified version of PMRA as PMRA*. Severalmethods propose

different algorithms for the phase B but still use the PMRA* algorithm to

identify the k-NNs (Huang et al., 2011; Mao and Lu, 2013; Mao et al., 2014).

The goal of phase B is to filter the candidate concepts and to propose only

the relevant ones. To do so, MTI uses several outputs from phase A. For ex-

ample, each concept extracted from the text withMetaMap is givenwith a

confidence score according to the quality of the word-concept termmatch

and the possibility of ambiguity. Also, when PMRA* returns similar doc-

uments, they are associated with a neighboring score. Those scores are

used to assess the relevance of each concept. The results are then ordered,

a cut-off is applied and the list is output. ML has been extensively used to

provide the results of phase B.

Researchers compared several indexing frameworks such as k-NN, concept

extraction and vector space models. Yang (1999) and Trieschnigg et al.

(2009) came up to the conclusion that k-NN approaches are the only scal-
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able methods that give good results. The k-NN discussed in those papers

is very simple: each neighbor acts like a voter for each concept it is an-

notated by and the algorithm counts how many times the concepts have

been voted up. Concepts are then ranked according to those votes. MTI

has been compared to such a k-NN approach in Trieschnigg et al. (2009)

and showed less good results than such a simple method. However, more

recent work on hybrid systems—that is, relying on concept extraction be-

sides the k-NN part—gave better scores (Huang et al., 2011). This new sys-

tem provides both efficiency and effectiveness. It relies on MetaMap and

PMRA* for phase A, and it uses a LTR (Learning-To-Rank) algorithm (Cao

et al., 2007) to rank the concepts. In this implementation of LTR, the fea-

tures used to determine the score of each concept are:

• concept frequency in k-NNs, like in Trieschnigg et al. (2009);

• word unigram/bigram overlap between a concept label and the title (

and abstract) of the paper;

• query likelihood scores betweenMeSH terms andwords in the title or

abstract by using information retrieval models;

• translation probability between two languages (author language ver-

sus expert language).

This approach only ranks the concepts, a cut-offmust be applied to provide

a result to the user. They proposed a list of 25 concepts. Their approach is

more elaborated than a simple k-NN frequency-based one, thus leading to

better annotations.

Later on, the NLM team behind the work in Huang et al. (2011) improved

their system for participating at the BioASQ 2013 and BioASQ 2014 chal-
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lenges. In 2013, they updated the LTR algorithm, they implemented dy-

namic cut-offs for thenumber of documents to retrievewithPMRA*and for

thenumber of concepts to suggest (Mao and Lu, 2013). They also considered

the baseline called MTIFL provided for the challenge. This baseline is the

draft output of MTI before human experts modify it by adding/removing

MeSH terms. In 2014, they updated the LTR algorithmagain, improved the

dynamic threshold of the number of concepts to return and added a new

feature based on the results of a binary classifier (Mao et al., 2014). Some

participants in the challengebuilt slightly similarmethods (Liu et al., 2014),

while other proposed multi-label classification approaches (Papanikolaou

et al., 2014).

2.2.2.3. Limits of ML approaches and general drawbacks

Although hybrid approaches showed more promising annotations, they

suffer from several limits. Jimeno-Yepes et al. (2012) note that ML meth-

ods behave differently depending on the problem and the dataset. For ex-

ample, annotating a paper with the MeSH and the Gene Ontology would

require to use different ML approaches, with different learning sets. They

hence suggest to usemeta-learning, that is the system learns to choose the

ML approach depending on the input data.

This improvement seems to overcome the specificity problem, but at the

cost of a high expertise needed to implement such a system and an exten-

sive learning phase. This learning phase is also a limiting requirement re-

gardless of the ML algorithm. Authors of tools including a learning phase

report to train it on huge amounts of training data compared to the num-

ber of test documents. Jimeno-Yepes et al. (2012) mention a learning set
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of 200,000 documents for 100,000 tests. Vasuki and Cohen (2010) report

a training on more than 9,000,000 documents for a test set of 200 papers.

Névéol and Shooshan (2009) used 100,000 articles to train the system for

100,000 tests. Every time, the size of the training set seems important

compared to that of the test sets (it is at least the same, sometimes much

higher). Besides, when the number of parameters modelled by the sys-

tem is high, it is prone to overfitting (i.e. the systemmodels very specific

features of the training set). This effect is even more important after an

extended training phase, so performance on bigger test sets should be eval-

uated as well as the predisposition of these systems to overfitting.

The main limit of all approaches presented in this thesis is their lack of

genericity. As a result, this whole section is focused on the indexing of

biomedical papers,while semantic annotationsarenot limited to thisfield.

More generally, almost all described approaches are text-specific whereas

this task is useful to annotate many kinds of documents. So far, there has

beennowork on a generic approach for annotating documents irrespective

of their type.

2.2.3. Evaluation datasets and metrics

The evaluation of indexing methods consists of comparing their results

with gold standard ones. These gold standards are made by experts in the

field, in general by the same teamthat actually annotates documents every

day at the NLM library. The aim is to assess how close the proposed anno-

tation of each paper is from the gold standard, and by extension, evaluate

the results on a whole dataset.
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2.2.3.1. Benchmarks

Although several methods were proposed for concept extraction or docu-

ment annotation, there has been a lack of proper benchmarks before the

first BioASQ challenge in 2013. Usually, in order to evaluate their system,

researchers created a gold standard dataset extracted from PubMed and

compared their resultswith the gold standard. Several small datasets have

been created and shared such as NLM2007 (Aronson et al., 2004) or L1000

(Huang et al., 2011). However, some authors evaluated their results on

datasets that are not accessible anymore as in Trieschnigg et al. (2009). Fi-

nally, there are even studies that do not share any dataset (Jimeno-Yepes

et al., 2012),making the comparison to their approach impossible. Indeed,

the source code of annotation tools is rarely available so it is impossible

to test the efficiency of older approaches on new benchmarks. Note that

this is quite contradictory with the initial aim of suchwork: building new

methods in order to help the indexing community and make proper ad-

vances in this domain. Since we encountered these problem, we decided

tomake all ourwork available online (softwares, results, datasets, etc.). In

order to evaluate a new system, one should thus choose between using a

very small benchmark (200 tests forNLM2007, 1,000 tests for L1000) ormake

a new dataset knowing that the results would not be comparable with pre-

vious work.

BioASQ bridges the gap by bringing proper evaluation sets (with a correct

size) and by allowing teams to submit results obtained with several vari-

ants of their tools during several months and compare their results. Af-

ter the BioASQ 2014 edition, Mao et al. (2014) made available a 5,000 tests

dataset from BioASQ named BioASQ5000 and the result of their method
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MeSHNow, winner of the 2014 challenge. Therefore, it is now easy to com-

pare a newmethod to state-of-the-art ones by using this dataset andMeSH

Now results.

2.2.3.2. Metrics

Several classical measures have been proposed in the literature for evalu-

ating results of automatic annotation against a gold standard. Precision,

recall and F-measure are the most common ones as in Huang et al. (2011).

Say the annotation G ⊂ P(C) is the expected result, which is the gold stan-

dard for a document, and O ⊂ P(C) the observed result. Precision P is the

fraction of the set of proposed concepts that is present in the gold standard,

P is maximal when the observed annotations are all in the gold standard:

P =
|G ∩ O|
|O|

(2.1)

and recallR is the fraction of the gold standard recovered by themethod, R

is maximal when all annotations in the gold standard are in the observed

annotations:

R =
|G ∩ O|
|G|

. (2.2)

The F-measure F is the harmonic mean of precision and recall thus provid-

ing a global assessment of the result, that is

F =
2 ∗ P ∗ R
P+ R

. (2.3)

Since the outputs of automatic indexing used to be proposed as a ranked

list, authors also used theMAP (Mean Average Precision) to emphasize the
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importance of the order (Trieschnigg et al., 2009; Huang et al., 2011). This

measure relies on the computation of an average precision (AP) for each

document d of the test set. AP is defined as follows:

APd =
1
|G|
∗

n∑
t=1

(Pt ∗ I(t)), (2.4)

Pt =
|G ∩ Ot|

t
, (2.5)

where t ∈ N is a position in the results of size n, Pt is the precision at this

specific position, Ot is the set of terms cut after the position t. I(t) is an

indicator function for which value is 1 if the term at position t is relevant,

that is it belongs to G, 0 otherwise. AP is thus computed for a finite list

of annotations, which means that a cut-off is applied. The MAP is then

computed for the whole test set Dwith

MAP =
1
|D|
∑
d∈D

APd (2.6)

Although those measures represent the metric that were mostly used for

evaluatingautomatic annotation, somepapersused several variations. Gay

et al. (2005), for example, use the F-measure as presented above as well as

the F2-measure that puts more weight on recall. In fact, a general expres-

sion of the F-measure exists:

Fβ =
(β2 + 1)P ∗ R
β2P+ R

(2.7)

where β = 2 in the case of the F2-measure and β = 1 for the classical F-

measure.
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When annotating documents with concepts that come from a structured

knowledge representation, precision, recall,MAPandF-measuremayseem

unadapted. In fact, those measures do not take into account the underly-

ing structure of the concepts. For example, say a paper is automatically

annotated mammal while the expected concept was dog. This annotation

is not perfect, but we knowwith theMeSH that a dog is amammal. There-

fore, giving a precision of 0 for this annotation seems inappropriate as it

does not capture the fact that mammal is a much better choice than the

completely out of scope conceptbicycle for instance. As a result, it is pretty

hard to compare the results of different approaches that are evaluated ac-

cording to thesemetrics as they do not reflect well their quality in this spe-

cific semantic context. Some authors thus investigated better fitted met-

rics as inNévéol et al. (2006). They conclude that semantic similarities give

better scores than precision and recall because they consider the structure.

They advise to use themwhen evaluating automatic semantic annotations.

However, to the best of our knowledge, no paper followedupwith this idea

until the BioASQ challenge.

The BioASQ challenge proposes two evaluationmetrics. They call themflat

and hierarchical. The flat measure is a simple F-measure, while the hier-

archical one called LCA-F follows the concepts presented in Kosmopoulos

et al. (2013). It is a sort of F-measure that takes into account the hierar-

chy of concepts by considering their ancestors. The idea is the same as in

Névéol et al. (2006), that is, using the relations among concepts to provide

a better assessed score.
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2.3. Motivation & positioning

There are several points that we question when semantically annotating

documents. The methods in the literature propose to output an ordered

list of concepts for a target document. We wonder whether order matters

and,more generally, if ordering is the right way to propose an annotation.

Basically, scoring each concept individuallymay lead to some biases in the

annotations (see §2.4.2.1).

Studies state huge amounts of training data that is needed to get their re-

spective results. There is also the risk of overfitting when numerous pa-

rameters are extensively trained. Apart from those downsides, every tool

proposed in the literature is type-specific, e.g. it only applies on biomedi-

cal documents. Somemay be extended tomore general textual documents,

but there is noworkdealingwith any type of document. Even in text-based

application, Huang et al. (2011) report that full texts are not always avail-

able, making the annotation task more difficult.

Finally, to the best of our knowledge, there is no study reporting anything

about algorithm complexity or running times for this task except some

scalability tests in Trieschnigg et al. (2009). Considering the increasing

number of documents to be annotated, those parameters become crucial.

2.4. USI: a generic User-oriented Semantic Indexer

The following sections describe the steps and choiceswemade to create a k-

NN-based annotation framework and its implementation in an optimized
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Figure 2.2.: The two main processing phases of USI. First the neighboring
documents are found by using an information retrieval sys-
tem. Second, annotations of the neighbors are processed to
find the most relevant concepts among them.

algorithm. In order to keep the description of thiswork consistent, we rely

on an example that will be this chapter’s main theme: the annotation of

biomedical papers with MeSH descriptors.

k-NNapproaches aremotivated by the assumption that documents close in

content should be close in their annotations. Their implementation thus

consists of identifying, thanks to approaches based on Natural Language

Processing (NLP) for example, a neighborhood of close documents and use

those neighbors to annotate the current document. Figure 2.2 depicts the

pipeline USI follows for annotating documents.

2.4.1. Selection of neighboring documents

Identifying close neighbors of the document to be annotated can be seen

as an information retrieval task, since the aim is to find documents in a

collection that match with a query. Here, the query would be the content

of the document to annotate—or its keywords, or any representation of its

content. This process relies on the content of the document, so it is type-
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specific: IRSs based on text work differently from the ones based on audio

documents. We further discuss the genericity of neighbor documents se-

lection in section 2.5.1 where the role of the user is emphasized. This step

can be assimilated to an IR task and many tools already exist to do this

job. Although it is absolutely needed in k-NN approaches, it is quite inde-

pendent from the proper annotation process. Therefore, we had to make

a choice on the system to use to get documents similar in content. For

our biomedical paper annotation example, we chose a state-of-the-art ap-

proach, PMRA*, the textual variant of PMRA described in §2.2.2.2.

2.4.2. Modeling the objectives

Let us assume a neighborhood of documents has been identified for the

target document. This neighborhood is a set K of k documents. Each docu-

ment d ∈ K is annotated by a set of concepts Ad ⊆ C such as

A : K 7→ 2C

d 7→ Ad.
(2.8)

The set of annotations of all documents ofK is a family of sets denotedAK =

{Ad|d ∈ K}. Once the neighbor documents are gathered, the system iden-

tifies the concepts that best summarize their annotations. Testing all sub-

sets of concepts would lead to a solution having an exponential time com-

plexity thatwouldnot be able to dealwith large ontologies. Wehence limit

our search space to the subset of conceptsA0 defined asA0 =
∪
Ad∈AK Ad. The

optimal solution to the indexing problem, A∗, is obtained by maximizing

an objective function f(A), that isA∗ = argmaxA⊆A0(f(A)). Thenext sections

describe the choices we made to model this objective function.
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2.4.2.1. Individual concept scoring versus annotation scoring

Classically, the concepts are individually scored according to several fea-

tures: Is this concept common in the neighborhood? Is this concept ouput

by several methods, e.g. both NLP and the neighborhood? The concepts

are then ranked according to their score(s). This approach however may

produce redundant annotations. Say a paper describes a study about carci-

noma affecting dogs. AnNLP analysiswould certainly extract the concepts

dog and carcinoma as top concepts among others. Say the documents in

the collection, therefore in the neighborhood, do not discuss the specific

case of the dog but carcinoma among mammals in general. Then, carci-

nomawould be highly rated since bothNLP and k-NN exploration return it.

dog and mammals would follow in the list. The order would basically de-

pend on theweight given toNLP or k-NN. A dog is amammal, so returning

the two concepts is a form of redundancy that the user would like to avoid.

This is due to the fact that each concept is scored independently of other

proposed concepts and often regardless of the ontology structure, leading

to possible annotations containing parents and their children concepts.

Set scoring may allow to overcome this redundancy. Instead of scoring

each concept, the idea is to globally evaluate a set of concepts considered as

a potential annotation of the document based on the neighborhood, con-

cept extraction, etc. Besides, it allows to assess the synergy of concepts alto-

gether. That is, for example, comparing the sets {dog, carcinoma} with

{dog, mammals} w.r.t the objective function. The way we chose to assess

the quality of a group of concepts is the semantic similarity. As described

in §1.3.2.4, many semantic measures are available. Groupwise measures

allow us to compare two sets of concepts, for instance an annotation sug-
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gested by the method with any element of AK. It thus seems that seman-

tic similarities would provide amore accurate annotation, certainly at the

cost of higher computation time. Indeed, finding an optimal set of con-

cepts is obviouslymore complex than individually scoring and ranking the

concepts but also closer to the intuitive idea of evaluating an annotation

suggestion. USI follows the set scoring strategy at the cost of an algorithm

complexity that will be discussed and optimized in §2.4.3.3.

2.4.2.2. The consistency criterion

Our approach only relies on the neighbor documents, so the systemmust

be able to score the annotation it proposes by relying solely on those neigh-

bors. We model the consistency of an annotation by its average similarity

with the neighbors annotations. The idea is that if an annotation is very

close to that of all documents inK, then it is likely to be accurate. The simi-

larity between the proposed annotation and the neighbor annotations can

be modelled by using a groupwise semantic similarity.

Let us generically denote simg(A,B) a groupwise semantic similarity re-

turning a similarity score in [0; 1] for two sets of conceptsA andB. Wewant

to explore the search space A0 to find the set of concepts that is the most

similar to the neighbor annotations. This ismodelled by the following con-

sistency objective

consistency(A) =
1
k

∑
Ad∈AK

(
simg(A,Ad)

)
. (2.9)

Wedonot fully discuss the choice of themeasure in this section (see §2.6.2).
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Note, however, that depending on the properties of the function chosen to

assess the similarity, the output may suffer from several downsides. For

example, let us analyze this very naïve similarity function:

simg(A,B) = max
a∈A
b∈B

(
simp(a, b)

)
. (2.10)

where simp(a, b) is a pairwise similarity functionbetween concepts a andb.

In that case, many optimal solutions A∗ exist since as soon as one concept

of Ad is present in A∗, their similarity is maximal. Therefore it suffices for

A∗ to contain at least one concept of each Ad of the neighborhood to be an

optimal solution. Obviously, such a groupwise similarity is not satisfying

asA0, or even Cwould be optimal solutionswhile being uninformative due

to a lack of accuracy and a high redundancy. This emphasizes the impor-

tance of choosing simg(·) and simp(·) carefully.

2.4.2.3. The concision constraint

The optimal annotation should be both consistent with the neighborhood

and concise. These two criteria may bring into focus the precision and re-

call metrics for evaluation in information retrieval. By returning many

concepts we have more chances of having good recall but often at the cost

of a low precision and vice versa. We define concision as a penalty on the

number of concepts in the annotation:

penaltyc(A) = μ|A|, (2.11)
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where μ ∈ [0; 1] is a parameter controlling the importance of the constraint.

Let us write the full objective function f(A):

f(A) = consistency(A)− penaltyc(A) (2.12)

f(A) =
1
k

∑
Ad∈AK

(
simg(A,Ad)

)
− μ|A|. (2.13)

In fact, here μ represents the decrease of the average similarity that the

user accepts for removing a concept. Here is an example of two candidate

sets: A1 = {dog, cat, rabbit, mammals} and A2 = {dog,cat,rabbit}. Say

A1 has a consistency score of 0.82 while A2 has 0.79. Say μ = 0.05, the

penalty for A1 is 0.2 and the penalty for A2 is 0.15. The final score for each

is thus respectively 0.62 and 0.64. A2 is preferred with this value of μ since

the user accepts to lose up to 0.05 in the average semantic similarity for

removing one concept and improving concision. The question of the value

of μ thus arises. Its value is nearly impossible to define by hand. In all

of our applications, we optimized it by fitting the expected average result

size of a test. It is important to note that this is so high-level (it reflects the

desired annotation lengths) that a small test set is sufficient for this task.

Also this could be combined with a fixed upper bound of size of returned

annotations (algorithm 1 implements this feature).

2.4.2.4. Discussion of other alternatives and leads

Before going further, let us briefly describe the other alternatives that we

have imagined and sometimes explored before abandoning them. Indeed,
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so far we have detailed the search space and an objective function that re-

lies on two criteria, but one can imagine different ways to calculate them.

2.4.2.4.1. An enriched search space

A0 is defined as the union of concepts annotating the documents of the

neighborhood. At first, we also imagined a definition that includes their

ancestors. Given A0 =
∪
Ad∈AK Ad, this alternative search space A

′
0 would

be defined as A′
0 =

∪
c∈A0 anc(c), where anc(c) is the list of all ancestors (or

superclasses, or hypernyms, etc.) of c. This alternative definition would

allow the system to propose annotations includingmore abstract concepts

and factorizing the annotation for example. However, factorizing the set

of concepts annotating theneighbors is not the purpose of indexing and an

annotation containing specific concepts is generally preferred. In the next

chapter, we further detail an application where considering the ancestors

has better odds to be relevant.

2.4.2.4.2. A specificity criterion

As we said an annotation had to be specific, one could suggest to empha-

size the specificity of the concepts to find A∗. In other words, creating a

criterion thatwould favor specific concepts overmore generic ones. In fact,

as we limit the scope of SSMs to the ones defined in the previous chapter

(see §1.3.2.2), specificity is inherently favored. Indeed, we saw that if we

consider two pairs of concepts distant by the same number of nodes in the

graph, the pair with higher indivual IC—thus specificity—is considered to
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be more similar. Besides, the choice of A0 over A′
0 is another way to favor

specific concepts.

2.4.2.4.3. Preprocessing the neighbor annotations

When observing the documents that are already annotated in a few cor-

pora, particularly in the biomedical domain,we identifiedwhatwe consid-

ered to be inconsistencies. Themost commonphenomenon is the presence

of parent-child concepts, for instance a document annotated by {animals,

mammals, dogs}. We thus thought about preprocessing such annotations

in the neighborhood to make them less redundant and avoid noise in our

algorithm. Such annotation would be replaced by {dogs} here as it implic-

itly encompasses others. After some researchwe saw that human indexers

have to obey some rules in order to keep the index consistent despite the

number of human experts curating it. What we thought to be an inconsis-

tency was in fact an indexing rule for the corpus. As a result, we decided

not to put any constraint on the annotations of the neighbors because the

essence of our algorithm is to mimic a human expert annotation.

2.4.3. Algorithm details

Thealgorithm is thefinal important choice tomake. Finding an exact solu-

tion according to the objective function is not feasible because of the expo-

nential amount of time required as there areO(2|A0|) possible annotations

to consider. In fact, the problem seems to be NP-complete and close to the

subset-sum problem for which a description is available in Cormen (2009),
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Chapter 35.5. We thus chose to rely on a heuristic algorithm to keep the

execution time low even if the size of the search space A0 increases.

2.4.3.1. An intuitive heuristic

An intuitive heuristic that could come to mind to solve the problem of se-

lecting the best subset of concepts among A0 is a hill-climbing heuristic.

Starting from an empty set, the algorithm adds concepts from A0 as long

as the objective function score increases. The opposite is also possible: re-

moving concepts from A0 following the same condition. Let us study the

complexity of this algorithm by proceeding step by step. In the worst case,

the optimum is A0 andwe added all concepts to A. Or for the opposite, the

optimum is only one concept and we had to remove all concepts but one

from A0 to get to the solution. Let us define n = |A0|, the algorithm up-

dates the annotation n times and, if there is each time a single concept

leading to an increase of f(A) and it is tested after all others, then f(A) is

called n+ (n− 1) + ...+ 1 times henceO(n2).

The choice of an agglomerative or subtractive approach actually matters

a lot. For example, let us consider the following A0 ={mammal, dog ,

carcinoma} and a trivial neighborhood of two documents annotated by

{mammal, carcinoma} and {dog, carcinoma}. We assume that the algo-

rithm explores A0 in its original order. With a subtractive approach, A0 \

{mammal}would be evaluated and, depending on the value of μ,mammal

may be definitely removed from A0. The other concepts would certainly

be kept because their removal has poor chances of increasing the objec-

tive function value—again, it depends on μ. Now with an agglomerative

strategy the algorithm would consist of iteratively adding concepts of A0
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to A, starting with A = {}. mammalwould be added first, then A ∪ {dog}

would be tested. At this point, the objective functionmay not increase, in

which case A∗ = {mammal,carcinoma}. This means that by choosing an

agglomerative strategy, we might pick a generic concept for an iteration

that might prevent the selection of more specific ones afterwards. How-

ever, a subtractive strategy is not exempt from reaching a local optimum

either since it is very sensitive to the order provided in A0. We have yet

not explored all the subsets of A0 because of the use of a heuristic, so the

possibility of reaching a local optimum should absolutely be minimized.

2.4.3.2. An improved heuristic

A good algorithmic alternative to the simple one-way exploration of A0 is

to find the best concept to remove at each iteration (see algorithm 1). This

means evaluating all possibilities at each iteration. For each concept re-

moval, all concepts of A—the current state of the set—have to be tested to

find the best one to remove, that is: n+n− 1+ ...+ 1 = n(n+1)
2 . Let z be the

size of A during the process, then f(A) is called
∑1

z=n z times in any cases.

The time needed to evaluate f(A) for each concept at each iteration highly

depends on the groupwise similarity that is used. Let us then study the

time complexity of such an algorithm and explore some optimizations.
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Algorithm 1: Approximate A∗ ⊆ A0 using a set of documents K
1 Function Annotate (K,μ, th, θ)

Input :The set of neighbors K, a real number μ ∈ [0; 1], a maximal
size of annotation th ∈ N, an ontology θ

Output :A set of concepts A
2 bestScore← −∞;
3 A←

∪
Ad∈AK Ad;

4 objectiveScore← f(A,μ,AK, θ);
5 while objectiveScore > bestScore or |A| > th do
6 bestScore← objectiveScore;
7 maxTemp← −∞;
8 maxConcept← null;
9 foreach c ∈ A do
10 tempScore← f(A\c,μ,AK, θ);
11 if tempScore >maxTemp then
12 maxTemp← tempScore;
13 maxConcept← c
14 end
15 end
16 if maxTemp > bestScore or |A| > th then
17 A← A\maxConcept;
18 objectiveScore←maxTemp
19 end
20 end
21 return A
22 end

61



chapter 2 v Semantic indexing

2.4.3.3. Study of complexity and optimization

Complexity of an unoptimized algorithm

In order to accurately assess the complexity of the whole algorithm, we

must take into account the time needed to compute f(A) defined in equa-

tion 2.12. It relies on the number k of selected neighbors and the computa-

tion of a groupwise semantic similarity.

In fact, we have to choose among three strategies for calculating the simi-

larity of two sets of concepts that are (i) using a simple indirect groupwise

measure, (ii) using a direct groupwise measure or (iii) using an elaborated

indirect groupwisemeasure. Thefirst strategy is for example to take the av-

erage of all parwise similarities of the two sets. The problem of such strat-

egy is that it does not capture the similarity as well as direct groupwise

measures. However, as explained in the first chapter, the disadvantage of

a direct groupwise approach is its high computation time. The last option

that we decided to choose is an elaborated indirect groupwise measure. It

provides similarities that are closer to the direct groupwise measures. As

for the direct measures, its computation is heavier than a simple group-

wise measure but it allows algorithm optimizations because it uses pair-

wise similarities so that some computation can be saved when updating

the annotation. The similarity measure we thus choose in order to evalu-

ate the closeness between two groups of concepts is a composite average

of pairwise similarities called Best Match Average (BMA) (Schlicker et al.,

2006) defined as follows:

simBMA(A,Ad) =
1

2|Ad|
∑
cd∈Ad

simm(cd,A) +
1
2|A|

∑
c∈A

simm(c,Ad), (2.14)
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where simm(c,Ad) = maxcd∈Ad(simp(c, cd)). This function thus requires to

compute every pairwise similarity between A and Ad. This means that for

each evaluation of f(A), all pairwise similarities of concepts from A and

AK are considered. Let us assume that each pairwise similarity simp(·) is

precomputed and accessed in constant time in this complexity expression.

Indeed, it would be counter productive to actually repeatedly compute the

same pairwise similarities. Instead, those similarities can be retrieved

from a database that stores the semantic similarities of all pair of concepts

for a given ontology. Say Sdmax is the maximum size of annotations in AK

and z = |A|. In the worst case, one groupwise similarity is thus computed

in O(zSdmax) and the computation of such similarity is done k times, once

per neighbor, according to the objective function. The computation of f(·)

at line 10 (cf. algorithm 1) is thus done inO(kzSdmax). As it is done z times—

once per iteration of the for each loop—, the complexity of the inner loop

(l.9-14) is thusO(kz2Sdmax) and that of the overall algorithm (while loop) is:

O(
1∑

z=n

kz2Sdmax) = O(kn3Sdmax) (2.15)

Optimizations

Computing BMA groupwise similarities is the most time-consuming task

as it is done repeatedly.

Let us focus on how the BMA is calculated. Equation 2.14 shows that it re-

quires to find, for each concept of Ad, the most similar concept in A and

vice versa. This supposes the constitution of a matrix of pairwise similari-

ties. The way A0 is constructed implies that ∀Ad ∈ AK,Ad ⊆ A0. Therefore,

building amatrixMpswith all n2 pairwise similarities ofA0 is the first step
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c1 c2 c3 c4 c5 c6 c7 c8 c9

A0

c1
c2
c3
c4
c5
c6
c7
c8
c9

A
0

Mpsmatrix

d1

d2

d3

d4

A1 = {c1, c2, c5, c7}

A2 = {c1, c3, c4}

A3 = {c8, c9}

A4 = {c2, c5, c6}

4 identified nearest neighbors

Figure 2.3.: Minimal example of the structure used prior to optimization.

to finding maxima and sum them up further on. Assuming that access to

all pairwise similarities is done in constant time, initialization of Mps is

done inO(n2) (see Figure 2.3).

Now, when calculating simBMA(A,Ad), we must restrict the matrix to the

submatrixMps(A,Ad) to avoid browsing the wholeMpsmatrix. This restric-

tion is done in O(|A| + |Ad|) by simply identifying the indexes of the rele-

vant rows/columns without duplicating the submatrix. In the rest of this

section,Mps is a shorthand notation referring toMps(A,Ad). Mps columns

are concepts of Awhile its rows are concepts of a given document d ∈ K as

showed by Figure 2.4. The optimization of USI lies in the fact that when a

concept cr is removed, the score difference of f(A\cr) can be efficiently de-

rived from the data used to estimate f(A) by updating the few intermediate

values impacted by the removal of cr.

The BMA measure relies on what we call SumMaxCols and SumMaxRows
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c1 c2 c3 c4 c6 c7 c9
c1
c2
c5
c7

A
A
1

Mps(A,A1) submatrix

d2

d1

d3

d4

A1 = {c1, c2, c5, c7}

A2 = {c1, c3, c4}

A3 = {c8, c9}

A4 = {c2, c5, c6}

Figure 2.4.: Restriction of the Mps matrix to handle d1 when considering
A = {c1, c2, c3, c4, c6, c7, c9}.

functions. The average of the values of those functions gives the result of

the BMA. In our case, when computing the similarity between A and the

annotationof a singledocumentAd, SumMaxCols(Mps) =
∑

c∈A simm(c,Ad)

and SumMaxRows(Mps) =
∑

c∈Ad simm(c,A). Let col(cr) denote the col-

umn of Mps representing the concept cr ∈ A to be removed. When cr is

removed, SumMaxCols result can simply be updated by substracting the

value of simm(cr,Ad). Therefore, we can compute once and for all k lists

called MaxCold of maximum similarities for A0—one for each document,

see Figure 2.5—and substract the value of the maximum similarity that

corresponds to cr for a given document in constant timewhen needed. The

computation of all themaxima is done for all concepts of A0, for every doc-

ument in K, inO(knSdmax) and can be updated inO(k) each time a concept

is removed from A. When a concept is removed—that is, n(n+1)
2 times—the

SumMaxColsvalues areupdated so theoverallmanagementof theSumMaxCols

values is in

O(knSdmax +
1∑

z=n

zk) = O(knSdmax + n2k). (2.16)
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1 4
2 3 9

5 8
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c1 c2 c3 c4 c5 c6 c7 c8 c9
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A0

A
1

Mps(A0,A1) submatrix

d1 A1 = {c1, c2, c5, c7}

1 2 3 4 5 6 7 8 9

c1 c2 c3 c4 c5 c6 c7 c8 c9

MaxCol1 list

Figure 2.5.: Restrictedmatrix andMaxCol1 list for d1. Cells in purple in the
restrictedmatrix contain themaximum similarity of each col-
umn, so for each concept of A. MaxCol1 associates, for each
column, the cell value that corresponds to the maximum sim-
ilarity.

When testing a concept removal (l.10), SumMaxCols is stored before mod-

ification so that it can be restored in O(1). Updating the SumMaxRows

value may require some more computation. The difference is that it may

happen, when removing a concept cr fromA, that it was precisely this con-

cept that gave the maximum value of a row and the new maximummust

be calculated. The idea behind the optimization for this part is that we

can detect when it happens. Figure 2.6 illustrates its implementation, de-

tailed thereafter. For each concept c ∈ A0, we store the list Inversec of doc-

uments in which it appears. We also store for each concept c ∈ A the rows

in which they currently give the maximum value in a list denoted Corrc.

As for SumMaxColumns, we compute the list MaxRowd of all maximum

values per row, that is, for each concept of Ad ∈ AK we find the concept

in A0 that gives the maximum similarity. This, and the creation of the

Inversec and Corrc, is donewith the same complexity as SumMaxColumns,

soO(knSdmax). After this initialization step,MaxRowd and Corrcmay need
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to be updated when A is modified, while Inversec never needs to. When a

concept is removed from A, we know which rows to update thanks to the

Corrc list. Updating the SumMaxRows is easy as it only requires to find

the new maximum for each concerned row, to calculate the difference be-

tween the oldmaximumvalue and the new one, and to add this difference

to SumMaxRows to update it. In order to find the concept to remove at

each iteration of the while loop (l.5-19), the maximum value for each of

the n rows needs to be updated exactly once—since all concepts of A are

tested once. Updating one is done in O(z) as the new maximum value

needs to be found. The SumMaxRows value for a document d ∈ K needs

to be updated in O(1) each time aMaxRowd value of one of its concepts is

modified, i.e. at most |Ad| < Sdmax times at each iteration of the while loop.

This happens for all neighbors and for each iteration of the while loop, so

inO(
∑1

z=n kSdmax) = O(nkSdmax). Hence themanagement of SumMaxRows

during thewhole algorithm consists of the initialization of SumMaxRows,

theupdate ofMaxRowd and theupdate of SumMaxRows and its complexity

is respectively:

O

(
knSdmax +

1∑
z=n

(nz) + nkSdmax

)
= O

(
knSdmax + n3

)
. (2.17)

As for SumMaxCols, this complexity analysis only details removal of con-

cepts. Indeed, restoration of a concept c that has been removed for testing

A\c does not need computation. Indeed, USI caches all impacted values

before modifying them when testing a concept removal so the complex-

ity does not increase because of the restoration. It follows that the overall

time complexity of this algorithm is defined by the complexities to create
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Figure 2.6.: Structures for optimizing the computation of SumMaxRow
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and updateMps, SumMaxColumns and SumMaxRows, that is

O(knSdmax + n3), (2.18)

which is more desirable than a straightforward algorithm in O(kn3Sdmax).

Besides, the time complexity is independent from the size of the corpus6

and that of the ontology, which guarantees the scalability of our approach.

Wealso studied the space complexity of this approach tomake sure it is still

scalable in space. USI is built on top of the Semantic Measures Library7

(SML) (Harispe et al., 2014a), which loads the entire ontology when load-

ing. Say the ontology is composed of |C| concepts. Semantic similarities

wework on rely on thehierarchical relationships (see §1.3.2.2), so the space

needed to load this ontology is inO(C2). The algorithmmainly stores three

objects: Mps inO(n2), maximum values for rows andmaximum values for

columns both inO(n). Hence the overall space complexity of USI is

O(n2 + n+ |C|2) = O(|C|2), (2.19)

because A0 ⊆ C, so n = |A0| ≤ |C|. If all pairwise semantic similarities

are precomputed and stored in a database, this space complexity becomes

O(n2). As USI is designed to be flexible and easy to use, it relies on a more

appropriate compromise and lets the user only input an ontology instead

of the list of semantic similarities. Therefore when USI has to compute a

pairwise semantic similarity, it does it once and for all by caching its result.

This is done in |C2| (if all parwise similarities have to be calculated) and it
6In fact, the size of the corpus is important for the retrieval of neighboring documents
but a lot of efforts have been devoted to the creation of scalable and efficient IRS to this
end and PMRA is one of them.

7http://www.semantic-measures-library.org/sml/
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Method F-score Semantic score Running time (sec)
LTR 0.467 0.768 0.169
USI 0.521 0.776 0.003

Table 2.1.: Comparison of USI with LTR regarding the F-score, semantic
score and processing time.

allows USI to benefit from quick calculation of semantic similarities in the

algorithm—in fact, in real cases as fast as having all pairwise similarities

in a database.

As wewanted to have an idea of this complexity in a real use case, wemea-

sured the processing time of USI on the same dataset as for LTR (Huang

et al., 2011). The authors kindly provided uswith the running time of their

algorithm8. Table 2.1 shows the results of the comparison between USI

as detailed above and the state-of-the-art system, in terms of F-score, se-

mantic similarity and average processing time per document in seconds.

Clearly, USI is faster than LTR (by a factor of 50) and the semantic score

(Névéol et al., 2006) and F-score of USI are significantly better than those

of LTR (p < 10−6, although the semantic score is very close).

2.5. Including the user in the task

Annotating documents is an important task for upcoming processes such

as information retrieval or decision making. Introducing a bias in the an-

notation would lead to inaccurate search results. Therefore, experts are

often needed to validate the annotation. In this section, we describewhen

and how experts may intervene.
8Note that the running times or LTR are obtained by using a somewhat comparable con-
figuration but on a different machine.
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2.5.1. Prior to annotating

So far we have described the neighborhood selection as an automatic task,

for example by using PMRA* to retrieve similar scientific papers. However,

the constitution of the neighborhood is key in a k-NN approach. It is even

more important forUSI, since it solely relies on theneighborhood for gener-

icity purposes whereas all other approaches also use features from the doc-

ument itself. We thus imagined a neighborhood definition interface.

2.5.1.1. Interactive interface

Wepropose that the expertsmanually but easily restrain theneighborhood.

Instead of automatically selecting the top k papers that PMRA* returns as

the neighborhood for example, we take the first 100 papers it proposes. All

of those papers are already annotated, so we can compute all similarities

of pairs of documents by using the SML and one of the implemented group-

wise semantic similarity measures. In order to be consistent with the in-

dexing process that will follow, the semantic similarities used to build the

similarity matrix are the same as in USI, i.e. Lin’s pairwise measure with

Seco’s IC and Schlicker’s BMA.Thematrix created is then used by theMDSJ

library9 (Pich, 2009) to build a 2D semantic map. MDS stands for Multi-

dimensional Scaling, an algorithm that makes a 2/3D projection of data

so that the distance reflects on the map as much similarity as possible,

i.e. semantically close items should be gathered on the projection while

semantically non similar ones should be distant on the map. The output

of this method is a set of coordinates that we use to build a map displayed

9http://www.inf.uni-konstanz.de/algo/software/mdsj/
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to the user as shown on Figure 2.7. Each dot represents a paper associated

with the name of its first author below it. Hovering over a paper displays

a tooltip with the full name of the paper.

We then ask the expert to point the location where the paper to be anno-

tated should be on this map. The expert should understand such a map

and be able to accurately select a position for the document. Once the user

clicked, the k closest documents on themap (using the Euclidean distance

between the click location and the document coordinates on the map) de-

fine the neighborhood that is passed to the USI algorithm to determine the

annotation of the new document.

Figure 2.7.: Example of map displayed to the user.
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2.5.1.2. Impact on the results

In order to test the benefits of such an approach, we evaluated themethod

by simulating clicks at the right position on the map. Indeed, evaluation

datasets provide expected annotations, so for each document we can

• define a set of 100 neighbors using PMRA*,

• build the map with the document—by using its annotation—and its

100 neighbors,

• define a narrower neighborhood according to its location,

• run USI with this restricted neighborhood

Results of this analysis on the L1000 dataset are displayed in table 2.2. The

conclusions are two fold. First, the F-score is better when using a fully au-

tomatic method. However, as explained in §2.2.3.2, it does not take the

structure of the ontology into account and is thus useful as a relative score

to compare two methods but not as an absolute score as it strongly penal-

izes small imprecisions (e.g. annotatingmammalwhere the gold standard

isdog gives an F-score of 0). The table shows how the F-measure can fail in

accurately evaluating conceptual annotations. Second, scores according to

the semantic measure are much more satisfying and certainly better rep-

resent the reality of the output. We observe that the results obtained by

correctly clicking on themap are significantly better10 than those of a fully

automatic approach. This suggests that if the annotations are of great im-

portance, e.g. concerning critical fields such asmedicine, then relying on

a human expert for defining the neighborhood might be a serious option.

10Significance has been tested with a paired t-test, for which p < 10−6.
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Method F-score Semantic score
USI automated 0.521 0.776
USI with map 0.509 0.807

Table 2.2.: Scores obtainedwith andwithout themap. The semantic score
is slightly better when relying on the map.

2.5.1.3. Limits of relying on an expert

Although this approach showsbetter annotations—according to the seman-

tic score—, it suffers from several downsides. First of all, onemay wonder

how easy it is to point the location where the document should be. The

expert is supposed to be able to do it quite easily since he/she would have

a rich knowledge of the published papers in the domain, but we could not

experiment on a real case to check whether or not this assumption is true.

It is certain that, whatever the time it takes for an expert to point the lo-

cation on the map, it will be slower than a fully automated approach that

outputs an annotation in a few milliseconds at most. One can thus ques-

tion theneed of an expert tomanually defineaneighborhood. USI provides

both solutions and depending on the use case, more or less time should be

spent on the definition of the neighborhood. We think that for difficult

cases of sensitive applications it is critical to make sure the neighborhood

is accurate, while inmost cases the automatically generated one should be

fine enough.

Finally, we studied the impact of imprecision when clicking on the map.

Indeed, what if the user clicks 100px next to the correct location? 50px?

3px? In other words, it may be useful to know and inform the expert on

the sensibility of the tool when displaying the map. There are in fact two
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(b) Score variation in a heterogeneous
context.

Figure 2.8.: Semantic score variation in different contexts. Distance
is computed according to MDS coordinates (usually in
[−0.5;0.5]).

cases for which sensibility may be different. Sometimes maps (or zones of

a map) contain documents with homogeneous annotations, while some-

times the documents are very different. For example, if a new topic has

been barely studied, it is likely that few documents only would be similar,

others would be returned anyway to reach the expected neighborhood size

but they will have highly heterogeneous annotations. Figure 2.8 shows

the variation in score of the output depending onhowdistant the clickwas

from the correct location. This analysis is performed in two different con-

texts: a heterogeneous and homogeneous zone. It appears that depending

on the context, the impact of imprecision of the click highly varies. In

homogeneous zones, imprecision is well tolerated while in heterogeneous

zones it leads to bad annotations.

Since the sensibility can vary depending on the map location, it is useful
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to provide the user with information on the impact of click imprecision.

Hence, we propose that when amap is computed, it is split in several tiles

(their number depends on the expected granularity). A click is simulated

at the center of each tile to define a tile neighborhood and a set of concepts

thatwould be associated to a document placed in the center of this tilewith

the USI algorithm. For each tile, we compute the semantic similarity of

its center with those of other tiles. We then associate, for each tile, the

neighbor tileswhichhave a semantic similarity higher than 0.95with this

one. When a user hovers over any tile of the map, those that are similar

are highlighted such that he/she easily knows howhomogeneous the zone

is and how careful he/she should be when clicking. Figure 2.9 shows an

example of this process. When the grey zone is large (a), itmeans that click

imprecision does not matter because the result will be roughly the same

anywhere in this zone. Conversely, when the grey zone is small (b), the

user should be careful when clicking since any imprecision would highly

impact the suggested annotation. Of course, computing annotations of

the center of the tiles is again time consuming, so this kind of use case

would be much slower than a fully automated one. However, it would be

faster for the user than an interface that does not help him/her and who

would spend a lot of time thinking where exactly the click should be on

cases when it does not matter due to annotation homogeneity.

2.5.2. After annotating

Despite efforts to automate the processes, experts are solicited for some

applications such as annotating papers for PubMed. Although the anno-

tation proposal is automated, it is sometimes crucial to rely on experts to
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(a) The user is hovering an area with ho-
mogeneous annotations.

(b) Theuser ishoveringanareawithhet-
erogeneous annotations.

Figure 2.9.: Representation of areas that let the user know how impreci-
sion of a click would impact the results. On the left, the users
donothave toworry about imprecisionwhile on the right they
need to be careful.

validate or to amend this proposal. This task is easier than a fully man-

ual annotation as they only have to confirm the most suggested concepts

and remove or add a few ones. Nonetheless, a rather inaccurate concept

would rarely be replaced. For example, say a paper should be annotated

by Carcinoma, Basal Cell. If the method returns Carcinoma, would the

expert intuitively change it to pick the most accurate Carcinoma, Basal

Cell? We expect from those experts to have an excellent knowledge of the

thesaurus, but memorizing the whole structure and its 27,000 concepts is

nearly impossible.

One solution to overcome this situation is to display the list of concepts and

for each of them, to propose related concepts by using semantic similari-

ties. The pairwise similarities can be stored in a database as explained in

§2.4.3.3. Or, even more efficiently, the closest neighbors of each concept

can be stored (e.g. the twenty closest neighbors of each concept according

to the Lin SSM) and proposed to the user. In any case, as long as the user is

part of the loop, some effort has to be invested to ease and speed up their
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System name Description
USI 10 neighbors Default version of USIwhere 10 neighbors are selected
USI 20 neighbors Default version of USIwhere 20 neighbors are selected
USI abstract “USI 10 neighbors” where semantic similarity is chosen using an abstract framework
USI baseline “USI abstract” integrating the provided baselines

Table 2.3.: Description of the systems submitted to BioASQ 2015.

work because it will always be the limiting factor in the process.

2.6. Evaluation of the approach: the BioASQ 3a task

We took part in the 3a task of the 2015 BioASQ challenge. This task con-

sists of annotating biomedical papers given several inputs: the PMID—an

identifier on PubMed—, the title and the abstract of each paper. Each par-

ticipating teamcan submit results of up to 5 systems. We thus participated

with the system described above and we created some variants presented

in table 2.3 to investigate several questions regarding USI. The following

sections detail several upgrades wemade for those variants.

2.6.1. The optimal number of neighbors

In a previous study (Huang et al., 2011), the authors already estimated the

optimal number of neighbors to consider for a k-NN approach. We con-

ducted a similar study to see whether or not our application needs more,

less or the same number of neighbors to give the best scores. While many

approaches identify the neighbors to define a pool of candidate concepts

and then rely onNLP strategies to score them, USI actually uses them to de-

fine the candidate concepts but also for selecting the relevant ones. There-

fore, a too rich neighborhood may lead to some noise in our method and
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less accurate annotations,while too fewneighborsmaynotprovide enough

candidates.

It thus seems crucial to study the impact of the size of the neighborhood

in our applications instead of solely relying on the previous analysis. We

tested a neighborhood ranging from 5 to 40 documents. To do so, we ran

USI 100 times on the BioASQ5000 dataset at each value of k and took the

F-score and the average processing time. The results of this analysis are

presented in Figure 2.1011. It shows that a plateau of F-score performance

is reached at 10 neighbors. It stays stable up to 20 neighbours where the F-

score starts decreasing. We explain this behaviour with the fact that con-

sidering too many neighbors induces noise. The processing time seems to

increase linearly, which can be explained by the fact that the algorithm

complexity is linear in k. However, we would expect that the size of A0

(n, in the complexity details) leads to a non-linear increase. This can cer-

tainly be explained by the fact that since the neighbors are close to the

document, they are certainly close in their annotations, so the size of A0

does not increase much when adding similar documents in the neighbor-

hood. The same study has been performed regarding the semantic simi-

larity score. The resulting curve is flatter, showing once again that in this

context, evaluating the results by using the underlying structure of the

KR is more robust than the classical F-measure. Still, the score decreases

passed 20 neighbors. We conclude that it is counter productive to take too

many neighbors as it may decrease performances while increasing compu-

tation time (even linearly). For the BioASQ challenge, we thus test a USI

variant (USI 10 neighbors) considering 10 neighbors as it seems to give the

11Those results have been obtained with an UNIXmachine with a 3.4GHzmicroprocessor
and 16GB of RAM.
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best scores in terms of F-measure and processing time on the BioASQ5000

dataset. We also submitted a system considering 20 neighbors (USI 20

neighbors) since this gives the best results for the semantic score.

2.6.2. Questioning the system measures

Onemain questionUSImay raise concerns the impact of the semantic sim-

ilaritymeasure on the performance of the system. Canwe rely on the same

semantic similarity measure irrespective of the application, or is it so im-

portant that an analysis should be performed prior to any real case index-

ing based onUSI?Those questionsmay also bring up some engineering con-

clusions. For example, if semantic similarity matters substantially, then

USI should be configurable to use as manymeasures as possible.

We used some provided test sets to make experiments on several seman-

tic similarity measures. We chose to keep the aggregation formula (BMA)

because it is quite a neutral composite average and there is nothing that

seems to justify the use of more complex aggregating functions for this

task. Therefore, the experiments have beenmade on several pairwise sim-

ilarity measures and ICs, both of which can have an impact on the results.

It has been recently showed thatmanymeasures proposed in the literature

can be viewed as an instantiation of a handful of abstract models (Harispe

et al., 2014b). For example, the Lin similarity is an instantiation of the

ratio model simRM proposed by Tversky (1977):

simRM(a, b) =
f(A ∩ B)

αf(A\B) + βf(B\A) + f(A ∩ B))
, (2.20)

where a, b are concepts, A,B are their respective sets of features, f is a func-
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(c) USI processing time (in ms) as a function of k.

Figure 2.10.: The impact of changing the number k of neighbors between
5 and 40 on the the semantic score (a), on the F-score (b) and
on the processing time (c) of USI.
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tion defined on the sets of features and α, β are two parameters. For the Lin

measure, α = 0.5, β = 0.5, f is an IC function. It is easy to implement and

test several variations of the ratiomodel by using the SML.We tested every

variation of this model with a minimum value of 0 and a maximum value

of 20 for α and β, with a step of 1. The choice of an IC may also have an im-

pact on the results. We thus tested this model using 5 different ICs: Seco

(Seco et al., 2004), Zhou (Zhou et al., 2008), Sanchez (Sánchez and Batet,

2011), Sanchez adapted 12 and a simple IC based on the number of ancestors.

Figure 2.11 shows the impact of changing theparameters of the ratiomodel.

Each subfigure represents the variation of α (on the x-axis) and β (on the

y-axis) for a given ICmetric and their impact on the final F-score of USI (on

the z-axis) for the BioASQ5000 dataset. It seems there is not much varia-

tion in the annotations. The value at α = β = 0 is an exception and always

leads to a score of ∼ 0.38. Indeed in this case, simRM(a, b) = f(A∩B)
f(A∩B) = 1,

therefore all the concepts are similar to each other and USI randomly re-

moves concepts from A0, which leads to an inaccurate result. Otherwise,

annotations are rated with an F-score that ranges in [0.56;0.60].

Table 2.4 completes the Figure by proposing, for each ICmeasure, themax-

imum and minimum F-score obtained—after removal of the α = β = 0

value—and their corresponding α, β values.

Two interpretations can be drawn from the observation of the Figure and

the table. In general, the choice of the SSM is not very important for USI.

Someone who wants to implement USI should not spend a lot of time on

this and simply make sure that the Lin SSM is appropriate. However, in

the context of a challenge or a sensitive application, no increase of per-

12This is from another formula in (Sánchez and Batet, 2011)
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(a) Seco’s IC (Seco et al.,
2004).

(b) Sanchez’s IC (Sánchez
and Batet, 2011).

(c) Zhou’s IC (Zhou et al.,
2008).

(d) Basic IC based on the
number of ancestors.

(e) Adapted Sanchez’s IC12.

Figure 2.11.: Impact on the F-score for the BioASQ5000 dataset of changing
the IC measure and the α, β parameters from 0 to 20 with a
step of 1.

Maximum Minimum
ICmetric F-score α β F-score α β
Seco 0.5887 2 1 0.5627 0 20
Zhou 0.5903 2 2 0.5654 0 20
Sanchez 0.5872 3 4 0.5668 0 1
Sanchez adapted 0.5870 3 2 0.5626 0 20
Ancestors 0.5899 1 1 0.5650 0 20

Table 2.4.: Maximum and minimum F-score and their corresponding val-
ues of α, β, obtained for each IC. The value of α = β = 0 is ig-
nored.
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formance should be neglected so we created a USI variant called USI ab-

stract that relies on the triplet α, β, IC that provided the best score on the

learning BioASQ5000 dataset: α = 2, β = 2 and IC function is Zhou’s (Zhou

et al., 2008).

2.6.3. Including the baselines

In this BioASQ 2015 challenge, a slight variation of the F-score can play a

drastic role as top systems often provide F-scores different by 0.01 or less.

Therefore, we decided to adapt USI abstract to this challenge by taking

baselines into account and we created the USI baseline variant. MeSH Now

(Mao et al., 2014) is a baseline system this year and was the winner of last

year’s challenge. The aim when creating a new system is, then, at least

to obtain better results than MeSH Now knowing that results of MeSH Now are

available for the BioASQ5000 dataset.

First, we analyzed the differences between the baseline annotations and

ours. The MeSH thesaurus contains headings called “check tags” 13. There

are 33 of them and they are widely used in annotations of papers, for ex-

ample: human, adult, animal, etc. In our outputs, we looked for the con-

cepts that are frequentlywrongly predicted or frequentlymissing from our

predictions and most of them were check tags. USI is actually pretty bad at

predicting those tags. The fact that USI is a generic approach—it solely re-

lies on the neighbors and not on the text features, for example—implies

that it may lack some precision in some applications, particularly in com-

parison with very powerful approaches such as NLP. The problem of the

check tagsdirectly comes from this limit as it is difficult to predict the correct

check tagswhen only the neighbors are used. For example, consider a paper
13http://www.nlm.nih.gov/bsd/indexing/training/CHK_010.htm
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to be annotated for which the expert annotation is carcinoma andhuman.

Assume for this example that closest neighbors are papers annotated by

carcinoma,mouse, etc., rarelymentioninghuman. If the systemuses no

clue from the abstract or title text, it will barely be able to predict those

tags. Since the baseline includes NLP tasks (with MetaMap) and seems to

better predict the check tags, USI baseline systematically adds the check tags

proposed by MeSH Now.

Second, we thought that the pool of candidate concepts may be too poor

and increasing the number of neighbors would not help (see §2.6.1). MeSH

Now outputs propose concepts coming from neighboring documents and

concepts extracted from the text. Therefore, we enriched A0 with the con-

cepts proposed by MeSH Now. This modification led to the same F-score as

MeSH Now—although the annotations were different. Finally, we defined a

simple set of rules to combine MeSH Now and USI outputs. Let us define

a set of concepts Aprocessed = A∗ ∪ Abaseline where A∗ is the ouput of USI ab-

stract and Abaseline is the output of MeSH Now. Then, for each concept of this

set, USI baseline keeps it if

• it is present in both A∗ and Abaseline,

• or it is present in A∗ only but removing it from Awould decrease the

objective function score by more than ε ∈ [0; 1],

• or it is present inAbaseline only and it is in the t ∈ N top concepts of the

list,

• or it is present in Abaseline and it is a check tag,

otherwise it is deleted. ε and t are optimized by using the BioASQ5000

dataset. This process only requires to store the value of f(A) when look-

85



chapter 2 v Semantic indexing

System F-measure on BioASQ5000
MeSH Now BF 0.608

USI 10 neighbors 0.604
USI abstract 0.608
USI baseline 0.615

Table 2.5.: Summary of results obtainedbyUSI systemson theBioASQ5000
dataset in comparison with the baseline, MeSH Now.

ing for the concept to remove. During the loop, USI tries to remove each

concept and for each removal, it computes f(A). This value is stored and

updated for each concept of A each time USI tries to remove it.

2.6.4. Results of the challenge

Let us first consider the results obtained on the BioASQ5000 dataset by our

variants presented in table 2.5. Interestingly, this table shows that USI ab-

stract performs as well as the best system of last year’s challenge, MeSH

Now BF. While MeSH Now BF is designed for annotating biomedical papers,

we see that a generic method can reach the quality of such a specific sys-

tem,mainly because of theuse of semantic similarities. By taking the MeSH

Now BF baseline into account, USI baseline shows slightly better scores on

BioASQ5000 than USI abstract. This proves that combining generic and

specific approaches is a relevant perspective of research for designing new

systems.

As for the challenge, since USI baseline systematically outperforms other

variants, we simply refer to it as USI. We expected such result as a simi-

lar conclusion could be drawn from the table 2.5. The results of the chal-

lenge are split in three datasets of 5 batches each and the systems are eval-

86



2.7 v Extension of USI to several contexts

uated once per dataset. The best batch-level results obtained by USI is on

the batch 1 week 2, where it ranks second among 10 systems participating

to this dataset14. In terms of dataset-level results, USI gets its best scores

on the first dataset as it ranks 3rd. Balikas et al. (2015) summarize the par-

ticipations to the tasks 3a and 3b of the challenge. Theymention that since

two baselines of MeSHNow are proposed this year and that it was the win-

ner of last year’s edition, “[they] expected these baselines to be hard to beat”. No-

tably, on the first dataset, USI outperforms MeSH Now while on the other

ones, MeSH Now BF has a slight advantage. These results are outstanding

considering the fact that USI has not been originally designed for annotat-

ing biomedical papers. Neither the title nor the abstract of the papers to be

annotated are used and still, USI gets among the top systems of the chal-

lenge. It ranks 4th out of 13 on the second and third datasets, for which

MeSH Now BF is ahead of USI. Overall, even if not in the top two systems, USI

is thus surprinsingly powerful compared to specific approaches. Besides,

our participation showed that themethod can handle large-scale indexing

as a high number of documents had to be annotated for each batch andwe

managed to submit the results of all four variants of USI for each of them

without parallelization, in less than 21 hours.

2.7. Extension of USI to several contexts

We made two applications in two different domains: enrichment of a sci-

entific database with new papers and annotation of movies. Indeed, al-

though this chapter focuses on the example of indexing biomedical papers,

14Participation to at least 4 batches out of 5 is required to be evaluated on a given dataset.
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the scope of USI is not limited to it. The framework behind USI only as-

sumes that a list of neighbors can be retrieved and that those neighbors

are annotated by concepts from a structured knowledge representation. It

then uses the neighbors to define a conceptual annotation for a new doc-

ument. Validating USI on other domains is not as easy as we could not

find benchmarks or reference datasets for evaluating automatic indexing

of othermedia. Besides, we think it is important to verify that ourmethod

can be easily adapted to another domain with different KRs and different

descriptions. Finally, these applications also allow anyone to try the inter-

active map as described in 2.5.1.

2.7.1. Enrichment of a scientific database: bioUSI

Demonstration at: http://bio.usi.nicolasfiorini.info/

This application illustrates the task detailed in this chapter: semantically

annotating biomedical papers. The following sections detail the data used

in this application and how it has been implemented.

2.7.1.1. Data

bioUSI relies on a database that has been elaborated by our team, consist-

ing of relations between authors, their papers and conceptual annotation

associated to those papers. It contains:

• 99,000 authors,

• 38,000 papers,

88

http://bio.usi.nicolasfiorini.info/


2.7 v Extension of USI to several contexts

• 500,000annotations, amounting toaround 13 conceptsperdocument.

This corpus focuses on the French medicine community dealing with can-

cer. It was created for the AVieSan (Agence nationale pour les sciences de la Vie et de

la Santé) in order to help this community in its research. The database con-

tains many other relationships such as teams of authors, research units

and labs. It has been used several times tomake adapted tools for this com-

munity such as OBIRS (Sy et al., 2012), a semantic IRS or CoLexIR (Ranwez

et al., 2013), an IR tool that benefits from lexical analysis.

2.7.1.2. Interactive interface

When a user wants to annotate a document, he/she needs to fill a form

specifying: (i) the title of the paper, (ii) the authors and (iii) the citations

of this document. The author field benefits from an autocompletion tool.

The system proposes names from the database that match the first typed

letters in the field and the user can easily pick the correct ones (see Figure

2.12a). One can imagine that the form could be automatically filled after

uploading a PDF file of the paper to be annotated or that a bibtex file would

be parsed for instance.

Once the form is sent, bioUSI needs to compute anMDS based on the infor-

mation the user provided. To this end, bioUSI constitutes a set of papers

selected on two criteria, instead of using PMRA*: (i) it selects papers in-

cluding authors that co-authored the target document; (ii) it fetches the

papers cited by the target document from the database or from PubMed de-

pending on their availability. bioUSI only needs their title, list of authors,

date of publication and the list of MeSH terms associated to them. This
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process follows the assumption proposed by Delbecque and Zweigenbaum

(2010) that previous papers of the co-authors and the papers they cite are

certainly related to the one to be annotated. In this application,many doc-

uments are not indexed in PubMed as some of them are French papers or

documents that are not published scientific articles but reports for exam-

ple. An IRS such as PMRA* would thus not be relevant in this context, ex-

cept for enriching the map with other documents. Once co-authored and

cited document information is retrieved, bioUSI creates an interactive 2D

map based on the MDS technique presented in §2.5.1.1 as showed in Fig-

ure 2.12b. The user can interact with themap by clicking on it once he/she

knows where the document should be located. This triggers the selection

of the ten closest neighbors according to themap and the launching of the

USI algorithmwith these neighbors as input. bioUSI then displays the an-

notation proposal of USI (see Figure 2.12c).

The server of bioUSI is a Tomcat 7 server that persistently stores the MeSH

and provides two Web services. One is the MDS Web service that is called

when theuser sends the form. ThisWeb service returns a list of coordinates

associated with the data of each paper to be displayed on the map. The

second one is an annotationWeb service based on the USI algorithm.
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2.7.2. Annotation of movies: moviesUSI

Demonstration at: http://movies.usi.nicolasfiorini.info/

moviesUSI is a more general application. The challenge here was to find

data to annotate semantically that would make sense for anyone. movies-

USI also aims at testing the genericity of USI to see whether or not it is

possible to load any knowledge representation and annotate any kind of

document. As moviesUSI uses cutting-edge functionalities, it requires a

recent browser to work properly (tests have been done on Chrome v43).

2.7.2.1. Data

Freebase15 is a great database of linked data. For this application,we down-

loaded a dump of Freebase and extracted all themovies it contains. The set

of movies constitutes the documents this application focuses on. We con-

sider that each movie is annotated by several genres, but it is important

to note that Freebase associates plenty of information to each movie that

we decided not to use for this application. We chose to extract the movie

genres as they are all structured. This structure of genres can be seen as a

simple ontology: eachgenre is unique and subsumes/is subsumedby other

genres. The database of moviesUSI thus contains:

• 238,000 movies

• 400 genres organized as a DAG

• 800,000 annotations, that is genre↔movie associations

15https://www.freebase.com/
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2.7.2.2. Interactive interface

This tool is a simple sandbox exploiting USI genericity andwe suppose that

users could use it tomanage their video library containingmovies that are

in Freebase (hence already annotated) and some that are not.

We ask the user to build their collection ofmovies. An autocompletion tool

helps here too to enter the movie names (see Figure 2.13a). Then, a map

representing the collection is proposed to the person. The technologies and

techniques used in this application are the same as in bioUSI—that is,Web

services, MDS, etc. Note that we could use further details of the movie

to annotate in order to build the map. For example, fetching the movies

of the same actors, or of the same film-maker. The main difference with

bioUSI is that the ontology is now a hierarchy of genres and the map is

built solely using the movies the user has in his/her own local database

(see Figure 2.13b). A click on themapwill again generate an annotation for

this location as in Figure 2.13c. We also tried to make the user interaction

better by displaying a picture of themoviewhen available. Hovering over a

movie displays a tooltip with its full name and year. It is also highlighted

in the list on the left.

With this application, it is much easier to see the consistency of USI, ir-

respective of the domain ontology and the type of documents. The few

users who tried this application gave us good feedback about it. They liked

thewhole interface and thought that the annotations suggested by the ap-

plication made sense. The quickness of the whole process has also been

appreciated, especially the rendering of the map and the computation of

movie genres after a click on the map. Besides, the creation of such an
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application is in tune with the objective of the LGI2P laboratory which pro-

motes technological transfer towards industrial partners. Such technolog-

ical transfer has been previously achieved with similar applications and

moviesUSI is a serious candidate for creating or enhancing partnerships as

it gives a great example of what USI can accomplish.

2.8. Chapter summary

This chapter introduced the thoroughwork that led to the creation of USI—

User-oriented Semantic Indexer. Itwasmotivated by the need, in our opin-

ion, for more generic indexing methods relying on ontologies. USI is an

attempt to this end and explores the possibilities of exploiting semantic

similarities to replace text-specific applications in the biomedical field.

USI is an indexing technique built upon an objective function modelled to

define what is expected from an annotation, considering a neighborhood

of semantically annotated documents. A heuristic algorithm implements

this objective function to approximate the optimal annotation and a com-

plexity analysis and optimization have been performed to make it faster.

The result of this work is a blazing fast, flexible and accurate indexing

method. It has been proved to be even faster than current ML approaches,

knowing that they are already famous for their swiftness. Besides, while

ML-based techniques require a (usually heavy) learning set, USI only has a

few parameters that can be optimized on a small set of examples.

We also successfully put USI’s flexibility to test with the BioASQ challenge

by implementing four variants of the algorithm. The results are outstand-

ing compared to our expectations: USI ranks in the top systems despite its
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genericity. This remark stresses that USI seems to be a powerful tool for

semantic indexing in general as it performs as well as state-of-the-art ap-

proaches for textual documents. However, it is not the top system and this

proves that text-specific applications still are the best choice approaches for

text-document indexing. We note nevertheless that the scores of all sys-

tems are very close, which makes us wonder if a plateau has been reached

in this field. This statement also questions the relevance of comparing sys-

tems when the scores are this close: does the difference mean anything

at all? We will certainly have more insight into this question in the next

edition of the BioASQ challenge in 2016.

AlthoughUSI can be run automatically, it ismeant to be user-oriented. We

thought that inmany fields, the end-user would like to have some control

over the annotations of the documents, so USI might be used as a proposal

generator. We detailed two ways of including the user in the process. The

most common one in the literature is to propose the annotation and let

the user alter it. We investigated and proposed a map of potential neigh-

bor documents to the user so that he/she may manually refine the neigh-

borhood. The idea is that automatically defining the neighborhood may

introduce a bias at the beginning of the process. We thought about the

visualization of the potential neighbors as amap and described a visual so-

lution to help the user when clicking on themap to limit imprecision. The

creation of such interactive, ergonomic and flexible interface is in agree-

ment with the LGI2P objectives of creating and proposing new industrial

partnerships. Indeed, these tools are ready for technological transfer, as

it has already been done many times in the team.

Finally, USI has been implemented in two applications, one related to bio-
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medical papers, the other one to movies. Both of them show a good exam-

ple of the potential of USI for annotating documents aftermeeting some re-

quirements (such as the need for already annotated documents). Nonethe-

less, the framework fromwhichUSI originated—an objective function and

an optimized algorithm—can be at the basis of many extensions. One ex-

tension, semantic indexing, has been deeply explored in this chapter. The

next chapter shows that another feasible extension of this framework is

semantic clustering and labeling.
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3.1. Abstract

Thelast chapter introduced an indexing frameworkbased on semantic sim-

ilarities. This allowed us to create a generic approach for annotating any

type of document. USI has been shown to perform well compared to state-

of-the art approaches submitted to theBioASQ2015 challenge. This chapter

presents one of the numerous possible extensions of this framework. The

use case presented here is a generic hierarchical clustering of documents

with labeling of the clusters. We compare our novel approach to classical

ones and study the benefits and limits of the use of semantic similarities

in this context.

Contributions related to this chapter

Fiorini, N., Harispe, S., Ranwez, S., Montmain, J., & Ranwez, V. (2015). Annotation

sémantique de clusters. In 16e conférence ROADEF, Marseille.

A semantic clustering interface: http://clustering.nicolasfiorini.info

A semantic clustering benchmark: http://benchmark.nicolasfiorini.info

A semantic clustering approach, SC: http://sc.nicolasfiorini.info
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3.2 v General information on hierarchical clustering
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(c) Clusters obtained with different cuts.

Figure 3.1.: Flat clustering (a) proposes a single partition of data while hi-
erarchical clustering (b) allows to infer several possible parti-
tions depending on the height at which the tree is cut (c).

3.2. General information on hierarchical clustering

As a general description of clustering has been proposed in §1.2.3, this sec-

tion focuses on hierarchical clustering. The main difference with other

approaches such as the k-means is that it provides a hierarchy of classes

represented as a tree instead of a flat partition of the data. In other words,

several partitions can be drawn from a single hierarchy (see Figure 3.1).
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The hierarchical clustering, or equivalently the tree representing it can

be obtained by following two strategies: an agglomerative or a divisive

strategy. The construction is said to be bottom-up for an agglomerative

strategy—the tree is built from the leaves to the root—and top-down for

a divisive strategy. Given a list of n documents, top-down approaches re-

quire for each iteration to find the most distant pair of subsets among a

list of 2n subsets. Usually, top-down approaches use a flat clustering tech-

nique such as the k-means as a subroutine to keep a polynomial time com-

plexity. The bottom-up construction is conceptually easier as it only needs

to be able to find the closest clusters at each iteration. In total, we need to

compare n(n+1)
2 pairs of clusters. For this reason, the bottom-up approach is

morewidespread andwe decided to rely on it. A detail of themethod is pre-

sented in Figure 3.2. There are two main steps in Hierarchical Agglomera-

tive Clustering (HAC). One, the algorithm is initialized. Each document—

more commonly called observations in the clustering community—to be

clustered is put in a singleton cluster and a pairwise similarity matrix of

all singletons is computed. Two, the closest clusters in thematrix are iden-

tified (a) and gathered. Thismeans that a new cluster is created (b) and the

matrix is updated by removing the two clusters and adding the new one

(c). The similarities of the new cluster with every other have to be calcu-

lated as well (d). This second step is repeated until there is only one cluster,

that is all clusters have been agglomerated. Note that branch lengths are

arbitrary in the schema for the sake of understanding. However, branch

lengths are important when partitioning from the tree as in Figure 3.1b

and they are usually based on the similarity value of the agglomerated clus-

ters in the matrix. The closer the clusters, the shorter the branches.

The key feature of HAC to define is clearly the way to compare (sets of) sin-
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Figure 3.2.: The hierarchical agglomerative clustering. Step 1 initializes
the clustering by creating cluster singletons and a pairwise
similarity matrix. Step 2 consists in finding the closest clus-
ters in thematrix (a), creating a new cluster f gathering them
(b), updating the similarity matrix accordingly (c and d). Step
2 is repeated until only one cluster remains.
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gletons that allows to build and update the similarity matrix. In fact, the

HAC requires the definition of two functions called the similarity metric

and the linkage criterion. The former is used to fill the initial matrix of

similarities (step 1). Depending on the kind of data on which the cluster-

ing is made, several existing functions can be used for this purpose. For

example, an Euclidian distance is appropriate for comparing coordinates

and the Levenshtein distance for comparing strings. More elaborated dis-

tances can also be imagined, for example based on n-grams (all possible

strings of size n of a text) for comparing texts, or on a related domain such

as the IR relevance models.

When two clusters are agglomerated, the similarities of the newly created

cluster with others are calculated by using the linkage criterion that de-

fines how to compare two sets of observations. The choice of this function

may impact the cluster shape and the branch lengths of the resulting tree.

Most of the linkage criteria are function of the pairwise similarity metric

that is used to compare the singletons. To cite the most common ones,

there are the single linkage SLINK, the complete linkage CLINK or the av-

erage linkage ALINK

SLINK(A,B) = max
a∈A
b∈B

{s(a, b)} (3.1)

CLINK(A,B) = min
a∈A
b∈B

{s(a, b)} (3.2)

ALINK(A,B) =
1
|A||B|

∑
a∈A

∑
b∈B

s(a, b), (3.3)

where A,B are the two clusters that are agglomerated, a, b are documents

within A,B respectively and s(a, b) is the similarity metric used at step 1.
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Let us study the complexity of theHAC comparedwith that of the k-means.

AsManning et al. (2008) point out, the time complexity of k-means isO(IK

NM) where I is the maximum number of iterations, K is the number of

clusters,N is the number of vectors (one vector represents a document) and

M is the space dimensionality. This means that the k-means algorithm is

linear in all variables, although the authors also note thatM can be high

depending on the vector representation, e.g. texts represented as vectors

of most frequent words. The HAC on the other hand has a complexity of

O(N3 + N2M) for a naïve algorithm and O(N2M) for most real case algo-

rithms. Note also that the complexity of HAC highly depends on the link-

age function since this is the one that is frequently computed. The pair-

wise similarity of all documents is computed once and for all at the begin-

ning of the process. Therefore themain benefit of relying on a hierarchical

approach is that the output containsmore information. The tree structure

allows the users to study several granularities, which we explore in this

chapter.

3.3. Related work

As described in §1.2.3, much effort has been devoted to the creation and

improvement of clustering methods in general. In this chapter, we focus

on clustering approaches that take into account semantic data, be it con-

cepts or hierarchical structures in general. We also tackle the problem of

annotating clusters, especially after or during hierarchical clustering.
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3.3.1. Semantic clustering

Let us have an overview of theworkwe canfindwhen looking for semantic

clustering. It quickly appears that there are some methods called seman-

tic or mixing clustering with ontologies ormetadata, however, there is no

proper consensus on a field called semantic clustering the same way we

define it, which is clustering documents by using their semantic descrip-

tions. Kuhn et al. (2007) for example introduced the concept of semantic

clustering as the fact of grouping documents containing the same vocab-

ulary. This approach is called semantic as they try to capture the mean-

ing of the documents to cluster them. The aim of their work is to create a

method to understand the source code of softwares in amatter of reducing

the time spent reading the code for maintaining it. Although most ap-

proaches use the documentation or external data, they claim that seman-

tics are contained in the formal part of source code, i.e. variable names,

function names, etc. Their method involves latent semantic indexing (see

§2.2.2.1) to compare pieces of code that can then be clustered. The clusters

they create can also be automatically annotated by using the data of the la-

tent semantic indexing, that is, identifying for each cluster the terms that

mostly contributed to their creation.

Clerkin et al. (2001) propose to use clustering in order to discover and cre-

ate ontologies—and not using ontologies to cluster documents. They use

a conceptual clustering algorithm called COBWEB (Fisher, 1987) and trans-

late the result in RDF (Resource Description Framework), a mean of rep-

resenting Semantic Web objects. Conceptual clustering algorithm such

as COBWEB aim at ordering observations in hierarchical classes with the

particularity that each class (here, called concept) is described by a model
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Name BodyCover HeartChamber BodyTemp Fertilization
Mammal hair four regulated internal
Bird feathers four regulated internal
Reptile cornified-skin imperfect-four unregulated internal
Amphibian moist-skin three unregulated external
Fish scales two unregulated external

Table 3.1.: A set of observations described by four properties (Fisher, 1987).

that summarizes the attribute-value distributions of objects classified in

it. This assumes that, as for HAC, observations are associatedwith descrip-

tions in the first place, such as provided in table 3.1. The goal and context

of conceptual clustering is thus closer to classical clustering than what we

want to achieve, although the vocabulary they use to describe themethods

is quite similar.

Some other studies are nevertheless closer to the scope of our work. Some

researchers have for instance studied the impact of integrating knowledge

base information in clusteringalgorithms (Bharathi andVenkatesan, 2012).

To the best of our knowledge, Hotho et al. (2001, 2002, 2003) have been the

first to consider this kind of approach. Their series of works consist in en-

riching document annotations with background knowledge—in the most

recent part,WordNet. Everything starts with the association of each docu-

ment with a vector of term frequencies, further referred to as term vector.

This vector is used in classical clustering approaches to compute document

similarities. Then, they test all combinations of a few strategies for each

step of the process:

First (prune) They prune the vectors with a threshold of 0, 5 or 30.

Second (dis) For each term in the vector space, they request the equiva-

lently corresponding concepts in WordNet. They either fetch all cor-
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responding concepts returned by WordNet (all); or they get only the

first concept returned (first); or they disambiguate the term using

an algorithm similar to that of Agirre and Rigau (1996) (context).

Third (enrich) Theymodify the termvectors by taking themapped concepts

into account. The add strategy simply concatenates the conceptswith

the term vectors. The repl strategy replaces the terms by their asso-

ciated concept(s) fromWordNet, if applicable, while the rmv strategy

builds a vector of concepts only and removes all terms.

Fourth (hyper) Inorder to consider the inherent structure ofWordNet, they

include either r = 0 or r = 5 next hypernyms of the concepts that en-

rich the term vectors. They also update frequencies in the vector such

that any occurrence of a concept counts as an occurence of its hyper-

nyms.

Best purity of clusters is achievedwith the following combination of strate-

gies: prune=30, dis=context, enrich=add, r=5. Overall, the conclusion

clearly is that relying on conceptual descriptions of documents improves

the quality of the clusters. The authors explain that this improvement is

due to the relationships between concepts (and thus the presence of com-

mon hypernyms, in their approach), where classical text clustering lacks

such relationships. For example, they show that documents about coffee

and cacao were gathered in a food cluster while food was never literally

mentioned in those documents. (Baghel and Dhir, 2010) also propose an

approach based onWordNet. In fact, they proceed very similarly to the pre-

viously detailed approach. They rely on concept frequency vectors that are

built from texts, except that they use a hierarchical clustering approach.

Breaux and Reed (2005); Sedding and Kazakov (2004) propose slightly anal-
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ogous techniques relying on amore classical HAC algorithm and k-means,

respectively.

Spanakis et al. (2011) prefer to useWikipedia to test their novel Conceptual

Hierarchical Clustering that they abbreviated CHC. They suggest a richer

model for representing documents than weighted concept vectors. After

having extracted concepts and retrieved their correspondingWikipedia pa-

ges for each textual document, they build a feature set for this document

including several distinct features. The weighted frequency Wfreq is the

feature that is used inWordNet based approaches. They also compute Link-

Rank that measures the importance of concepts in documents by calculat-

ing thenumber of relationships eachof themhaswith theothers byobserv-

ing links between corresponding Wikipedia pages. The ConceptSim feature

calculates the term-based similarity (i.e., using classical term vectors) be-

tween a document and theWikipedia page corresponding to one of the con-

cepts that are extracted for this document. OrderRank is a value associated

to each concept that is bigger when the concept appears early in the docu-

ment. Finally, Keyphraseness captures the descriptive power of concepts in

Wikipedia by relying onhow the concept is referred to in the articles: plain

text or a link to an article. The more a concept is used as a link in the ar-

ticles, the more it has descriptive power. CHC is a hierarchical clustering

technique that then relies on a combination of these features to build the

tree.

The particularity of work by Yoo and Hu (2006) is that they propose to pro-

videanunderstandable representationof the clusters that are created. Clus-

tering is made in four main steps in their approach. First, as for most pro-

cesses detailed so far, document terms are mapped with concepts of KR
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Figure 3.3.: Individual Graph Representations for each document (Yoo and
Hu, 2006).

(here, the MeSH). A graph representing each document is built, that con-

sists in the shortest path linking all concepts. In other words, the graph

contains all concepts of a document and all their superclasses up to the

superclass they share (see Figure 3.3). Second, the individual graphs are

merged into a corpus-level graph. It is enriched with relationships of co-

occurrences of concepts. An algorithm calculates the number of co-occur-

rences needed for a pair of concepts to be linked and for each relevant pair,

anedge joining themisadded to thegraph. Third, theypartition the corpus-

level graph and define classes associated with a subgraph of the corpus-

level graph. Finally, documents are associated with classes. The authors

claim that graph similarity measures are not applicable in this context as

the graphs are too different in terms of vertices and edges, instead a voting

mechanismallows the systemtoassociate eachdocument representation—

thus each document—to a cluster. In addition to proposing a novel way to

use ontologies, this work is a step towards the idea of annotating clusters

thatwill be discussed in §3.3.2. Indeed, the resulting clusters have a graph

representation that can easily be understood by the users.

Song et al. (2009) are the first to use semantic similarities as a metric for
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clustering semantically annotateddocuments. TheSSMthey rely on is that

of Li et al. (2003) and is expressed by two factors:

simLi(c1, c2) = f1(l) · f2(h), (3.4)

where l is the shortest path length between c1 and c2 and h is the depth

of their LCA. This reminds some other SSMs presented in the first chap-

ter such as Lin’s measure (Lin, 1998). This work features one of the ideas

proposed by Hotho et al. (2003) of mapping the term vectors to all the con-

cepts they may be an instance of. For example, if the word jaguar is used

in the text, the strategy they follow is to associate it with the concepts

of the cat, the car and the guitar. Then, the semantic similarity of two

wordsw1,w2 represented by their concepts (c1,1, ..., c1,n) and (c2,1, ..., c1,m) re-

spectively, is assessed as follows: simSong(w1,w2) = max
{
simLi(c1, c2)

}
,

c1 ∈ {c1,1, ..., c1,n}, c2 ∈ {c2,1, ..., c2,m} and that of two documents is the av-

erage of similarities of their words. The clustering method they proposed

is quite uncommoncompared to all other papers as it implements a genetic

algorithm. This kind of algorithmprovides a near-optimal solution by ran-

domly searching the space of solutions using principles analogous to natu-

ral selection and heredity. They argue the drawback of such an algorithm

when applied to clustering is that it requires to set a number of clusters,

and provide a way to remove this limit.

The use of knowledge for enhancing clustering has also been successfully

tried for clustering non-text documents that have been semantically in-

dexed, e.g. genes (Liu et al., 2004; Adryan and Schuh, 2004). Liu et al.

(2004) try to tackle the curse of dimensionality1 encountered in some clus-
1CoinedbyBellman (2003), thephrase refers to thephenomena that appearwhendealing
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teringapplicationsbyproposinganovel subspace clustering technique. The

idea of the task is to find potential clusters in various subspaces, which

means that it can capture the fact that some items may belong to several

clusters, depending on the considered dimension(s). The DNAmicroarray

technology for example is known to be at the origin of high-dimensional

data because it produces a lot of gene expression measurements at once.

Theauthors focus on this use case byusing the data of Spellman et al. (1998)

thatprovide the expressionof 6,218 genes of S. cerevisiae every 10minsduring

160mins,which represents two cell cycles. They cluster the genes based on

their expressions and show that guiding this clustering with the ontology

bypruning the search space—so that irrelevant solutions arenot explored—

greatly reduces the computation time of the algorithm while producing

results somewhat comparable in terms of cluster quality.

Finally, clusteringhas been applied tometadata inMaedche and Zacharias

(2002); Lula and Paliwoda-Pękosz (2008). Metadata contain instances of on-

tology concepts that are also related to each other. Let us consider the Fig-

ure 3.4, Finnland is an instance of the concept Country and is related to

Finnish, an instance of the concept Language. Recall Definition 1 in Chap-

ter 1, there are two kinds of relationships called taxonomic (HC) and non-

taxonomic (R). Metadata make use of all relationships to build a graph of

instances for an underlying ontology.

Theydeveloped several semantic similaritymeasuresbasedon the relations

of the metadata graph to make a hierarchical clustering of the metadata.

This approach is the closest to what we aim to do. However, they rely on

a complex structure (metadata) that is rarely available because building

with high-dimensional data.
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Subclass-of
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Ontology
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Figure 3.4.: Metadata is a graph of instances of concepts from an ontology.
This Figure is inspired by Maedche and Zacharias (2002).

those databases is time-consuming. A still time-consuming but more fre-

quent method is to annotate a document with concepts of an ontology in-

stead of representing this document as a graph. For example, a dramatic

movie occurring in France during the World War 2 would be a document

annotated by drama, france and world war 2 instead of a graph with

relationships (“when”, “where”, “genre”) linking those annotations.

The papers described in this section aremore or less related to what we call

semantic clustering, ontology-based clustering or ontology-driven cluster-

ing. Although it is certain that relying on an ontology helps clustering doc-

uments, few works detail how to rely solely on the document annotations

and underlying ontology. Besides, hierarchical clustering has been barely

explored when considering ontologies e.g. Maedche and Staab (2001); Bre-

aux and Reed (2005) compared to other clustering methods like k-means.

Semantic similaritieshavebeenexploited in fewpapers (MaedcheandZach-

arias, 2002; Song et al., 2009; Shehata et al., 2006), but they did not con-

sider the existing and numerous semantic similarities except in Ovaska

et al. (2008), which focuses on genes. Unfortunately, this work has two
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downsides. First, it is only applicable to genes, although the core idea is ac-

tually generic. It relies on GO (Gene Ontology) concepts—so it cannot load

another ontology—to cluster the genes based on the semantic similarity

of their annotations. Then, they map the clustering with the expression

data as it is meant to be used for gene clustering after a microarray anal-

ysis. Second, they rely on a basic hierarchical clustering algorithm with

classical linkage functions instead of exploring the behavior of recomput-

ing semantic similarities during the clustering (see §3.2 for more details

on this aspect).

As a result, there is no work in the literature that seeks to hierarchically

cluster documents of any type by relying on their semantic annotations

and semantic similarities.

3.3.2. Semantic cluster labeling

In analysis tasks anduser interfaces, clusters have to be rapidly understood

by the users. In InformationRetrieval, for a query “travel to Germany”, the

results can be presented as clusters of hotels, restaurants, sightseeing, etc.

Another common use of cluster labels is whenwewant to understand how

itemshave been gathered (Manning et al., 2008). After clustering genes by

using their expressiondata in a fewenvironments for example, onemaybe

interested in what characterizes each group. Consequently, cluster label-

ing often follows a clustering analysis as it is an important task for cluster

analysis (Geraci et al., 2006).

Role and Nadif (2014) state that inmost labeling approaches after text clus-

tering, labels are simply terms picked from the texts according to their fre-
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quency. The limitation of such a process is that relationships among the

words are not represented. They thus propose an approach tomake a graph

representation of terms for the clusters and give the user a better under-

standingof themeaningof the clusters. First, they build adocument-term

matrix as for the LSA and they use a k-means algorithm for clustering this

matrix into k clusters of documents. Second, they reduce the document-

term matrix by observing the terms that most contribute in the creation

of each cluster. Third, they build a term similarity matrix based on cosine

similarity of weighted term vectors. Then, they combine the reduced ma-

trix and the term similaritymatrix to build a graph, with terms as vertices

and similarities in place of edge weights. Finally, the graph is pruned by

removing low-weight edges (and thus low-supportednodes) to keep it read-

able. The result is a graph with top elements—from the reduced matrix—

connected to each other when they are highly similar. This representation

of clusters is thus called semantic as it provides a structured summary of

the content.

As for clustering, the benefit of using external resources such asWikipedia

has been predicted and tested (Carmel et al., 2009). Authors realized that

even if the gold standard words were present in the documents of a given

cluster, they would rarely be selected to annotate this cluster. In order to

improve the results, they define for each cluster the list of best candidates

by identifying those that distinguish the cluster from the others by relying

on their previouswork (Carmel et al., 2006). Instead of directly annotating

the clusters with these terms, they use an IRS based on aWikipedia dump

and submit a query containing these terms. A list of Wikipedia articles

is returned, from which they extract metadata, that is, the title and the

categories of the article. Then, a scoring system evaluates the whole list
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of candidates—the initial list of terms and themetadata fromWikipedia—

with twometrics. One assesses themutual information of each termwith

the other candidates2. The other one scores the label by averaging the score

of the document(s) to which it is related and that are returned by the IRS.

The results show a significant improvement compared to simple term ex-

traction based on frequencies for instance.

Most of the work regarding semantic cluster labeling is related to gene

clusters. The reason is that genes are annotated with Gene Ontology con-

cepts that can thus be used for inferring labels to gene clusters. This way,

some protein-protein interactions may be inferred, as an example. Be-

sides, gene clustering is useful for researchers to understand which genes

are expressed the sameway in the same conditions, for instance for a given

metabolic pathway. GOstat (Beissbarth and Speed, 2004) proposes to anno-

tate a group of genes by finding overrepresented GO concepts among their

annotations. This approach takes the structure into account as ancestors

of concepts annotating the genes are considered to be potential labels. GO-

stat then performs a statistical analysis to pick the concepts that are over-

represented. Several other tools add slight variations to improve the per-

formances and/or quality. While GOstat uses a combination of X 2 with

Fisher’s Exact test, Lee et al. (2005); Bauer et al. (2008) use different statis-

tical models, respectively the Mann–Whitney U test and the sole Fisher’s

Exact test. Another approach puts more emphasis on scalability and con-

siders the order of the genes in the list (Reimand et al., 2007). The authors

take the example of the constitution of a list by picking a gene of interest

and adding other genes ordered by their similarity to the first one in terms

2The mutual information aims at measuring the mutual statistical dependence of two
random variables.
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of expression data. Finally, there is also somework for improving the user

experience, for example with providing new covered species (Shah and Fe-

doroff, 2004) or new visualization tools (Maere et al., 2005; Paquette and

Tokuyasu, 2010; Mi et al., 2010).

Although these approaches are relevant in a biological context, the way

GO concepts are picked for labeling the clusters in another context can be

discussed. Overrepresentation is one way of summarizing a set of con-

cepts by picking those that directly or indirectly appear the most. This

kind of approach, however, does not consider the specificity or generic-

ity of the labels. Especially when labeling hierarchical clusters, the speci-

ficity/genericity ratio needs to be controlled in order not to give the same

labels to successive parent nodes. Besides, themost elaborated approaches

for cluster labeling are related to GO while this task is useful to many con-

textswith various ontologies. In essence, thesemethods could certainly be

adapted to work with another ontology, however, the papers are often in

application notes format that do not provide implementation details and

the source code is rarely available.

Some papers introduced in §3.3.1 propose to build hierarchical clusters by

using novel (Maedche and Zacharias, 2002) or existing semantic similari-

ties (Ovaska et al., 2008). By doing so, they give the first insight of using

semantic similarities for clustering and annotating the nodes. When a

newnode is defined in the tree, it is justified by a high semantic similarity

of its children. Semantics thus literally explain the grouping and should

be used in order to label the node.
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3.4. Motivation & positioning

The previous section shows that although a lot a work has been done in

the several aspects this chapter explores, there are currently few studies

on clustering and cluster labeling from entities annotated with concepts.

Yet this kind of taskwould be useful in numerous domains, for example se-

mantically annotated images couldbeautomatically ordered in (sub)folders

that are named accordingly. While some effort has been devoted to cluster-

ing semantically annotated documents the methods lack genericity: in-

puts are genes with expression data, some others are metadata, there is

no choice of the semantic similarity or they are restricted to one ontology.

The clustering field is a wide research topic and we do not want to create

newclusteringmethods. However,we think thatwhen the documents are

annotated by concepts, clustering can be thought differently, or at least

enriched as inMaedche and Zacharias (2002). To this aim, we conducted a

study on the use of semantic annotations for clustering by using semantic

similarity measures.

More importantly, we want to explore a new question: how to summarize

a set of concepts? The structure linking the concepts altogether is known,

so we may be able to find a way to reduce a set of concepts while keeping

this set accurate. Some research intented to do so by statistically selecting

overrepresented concepts in the set with consideration of their underlying

structure, but overrepresentationmight not be the best property to use for

summarizing.

Such a process has a very concrete application, cluster labeling. Previous

works emphasize the fact that cluster labeling is helpful, if notmandatory,
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to understand the results of a clustering. When documents that are anno-

tated with concepts are grouped into a cluster, one can think we can use

those concepts to annotate thewhole cluster, especially because the group-

ing is basedupon their semantic similarity. Some conceptsmight be irrele-

vant for thewholegroupandshouldbe removedwhile someothers couldbe

generalized—dog and cat as domestic animals for example, as suggested

by some studies that consider hypernyms (Hotho et al., 2003). Two poten-

tial problems may arise when one intuitively tries to fulfill this task. Us-

ing all the hypernyms of each concept may lead to a lengthy description

and solely using the documents’ annotations would produce a too specific

description of the clusters. Consequently,wewant to propose amodel that

derives from our annotating framework.

We seek to make a method that can cluster semantically annotated doc-

uments while labeling those clusters instead of having two independent

tasks. Indeed, clustering groups the items together for a reason that can

be explained at the moment they are grouped, so this information should

be used at the same time for labeling the clusters. Indeed, inconsistencies

between the clusters and their annotations may be encountered when the

two task are done independently, because the clusters would be obtained

according to different paradigms to those of the annotations.

3.5. Benefits of semantic clustering

This section focuses on our contribution to the clustering of documents by

using their semantic annotations. As for automatic annotation, the aim

here is to only use those annotations so that thefinal application is generic.
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3.5.1. A consistent and accurate clustering approach

As explained in §3.2, the similarity metric is chosen according to the type

of data to cluster, e.g. the Levenshtein distance is often used for clustering

stringswhereas n-grams approaches are favored for texts. It thus seems in-

tuitive to rely on a semantic similarity measure as the elementary metric

to build the similarity matrix of documents annotated by concepts. We

assume that each document is annotated by one or several concepts. The

similarities of all documentsneeded for creating the initialmatrix are com-

puted by using a groupwise semantic similarity (Harispe et al., 2014a). The

first feature of our approach is that, when two clusters are agglomerated

into a new cluster, we recompute its similarity with every other cluster by

following the same similarity we have used for creating thematrix. While

classical methods would use an arithmetic function based on elementary

similarities such as an average, it seems to be more accurate to rely on the

same similarity function. In fact, this proposal guarantees that the whole

tree is consistent w.r.t a given SSM, and that there is no bias introduced

by averaging (or maximizing, or minimizing, etc.). This idea has already

been successfully implemented by Ranwez and Gascuel (2002) and it shows

that at a small computational cost, the quality of the clustering can be im-

proved. This feature yields the secondnovelty in our algorithm in the sense

that we propose the clusters as well as the labels that can describe them so

that they are easily interpretable. That is, when a cluster is created, it can

be annotated by using the concepts of the observations it contains and the

resulting labeling is at the basis of the similarity of the cluster with the

other ones (see Figure 3.5). Note that again, as our implementation uses

the SML, it provides a great flexibility on the SSMs that can be used and a
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similar study could easily be conducted with other metrics picked among

the numerous ones proposed by the SML. In other words, the hierarchy of

clusters and their annotations are all consistentw.r.t. a given SSM,which

also implies that the quality of the labels and that of the clustering aremu-

tually important and strongly related.

Unfortunately, the studies presented in the relatedwork sectiondonot pro-

vide a satisfying semantic similarity-based technique for clustering seman-

tically annotateddocuments. Theyeither describe anewwayof computing

semantic similarities based on another kind of data (Maedche and Zach-

arias, 2002) or they require a too specific input (Ovaska et al., 2008). In our

adaptation, we decide to pursue with the BMA that we already used for an-

notating (see Chapter 2) as it—or a close variant—has already been used in

previous studies for this task aswell (Ovaska et al., 2008; Song et al., 2009).

As we do not have any pre-requisite about the behaviour of the clustering

method, a composite average seems to be appropriate. Depending on the

needs of the application, the choice of the pairwise similarity can vary. For

our tests, we use the Lin similarity (Lin, 1998) with Seco’s IC (Seco et al.,

2004) that are both common in the literature and quite neutral, i.e. they

do not aim to fulfill any particular requirement (see §1.3.2.4). Besides, this

combination has been proved to be relevant regarding the results obtained

in the previous chapter.

3.5.2. Labeling the clusters

Westill need todefine the set of concepts that isused for representing/anno-

tating a given cluster. As for annotating a document, this requires the defi-

nition of a selection strategy based on amodel of the objective. This section

presents the choices we made and the justification for them.
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d1

d2

d3

d4

A1

A2

A3

A4

Cl1 Cl2 Cl3 Cl4

L1 L2 L3 L4

Cl1 Cl2 Cl3 Cl4

Cl5L2 L3 L4
L1
L2
L3

Cl1 Cl2 Cl3 Cl4

Cl5 L5L4 L5
L3
L4

Figure 3.5.: HAC adapted to semantically annotated documents. First all
singleton clusters are associated with the annotations of the
documents they represent, called their labels. Then a similar-
ity matrix is computed upon the semantic similarities of la-
bels of clusters. It is used to find the closest clusters that (here
Cl1,Cl2),whenagglomerated, lead to the creationof anewclus-
ter Cl5which label L5 needs to be calculated. Once this is done,
Cl5 is added in thematrix and corresponding semantic similar-
ities are calculated.
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3.5.2.1. Summarizing versus merging

Let us first expose an example by denoting Cl1,Cl2 two singleton clusters

(representingonedocument each), respectivelyCl1 = {d1},Cl2 = {d2}. Those

documents are annotated by A1 and A2, two sets of concepts. This is a very

early step of the clustering since each cluster represents only one docu-

ment. Therefore, the labels of Cl1,Cl2 simply are L1 = A1, L2 = A2, respec-

tively. Say Cl is a new cluster such that Cl = {Cl1,Cl2}. We need to define

the labels LCl that characterize Cl.

One very intuitive solution is to merge the labels of Cl1 and Cl2. That is,

LCl = L1∪L2. As briefly introduced in theMotivation section of this chapter,

this solution may be problematic both for the labeling and for the result-

ing clustering. When merging the labels, the number of concepts will in-

crease quite fast while clusters are agglomerated. As a result, the top level

clusters—the ones close to the root of the resulting tree—may be hardly in-

terpretable for the user. Some concepts are very specific to one document

and thus should not be propagated to clusters of higher levels. This can

also affect the clustering by adding up some noise because as stated in the

previous section, the quality of labels may impact that of the clusters and

vice versa. Besides, such a strategy ignores the weights of concepts in the

agglomerated clusters. That is, if one concept is more represented than

the others, it would be wrongly considered as the others. Amore appropri-

ate process would be that as the clustering is agglomerating, the labels get

more and more generic because the clusters themselves are getting more

abstract. Finally, in a basic merging approach, the commonality of labels

of the grouped clusters is not taken into account while it should be regard-

ing the fact that labels are concepts from an ontology. Redundancy due to
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the commonality may thus be avoided by leveraging the structure of the

underlying ontology.

A promising alternative is to summarize the labels. Every time a cluster

is created, its labels should be computed according to the two clusters it

contains. There are some objectives that can be expected for such an inter-

pretable summary:

• it has to accurately reflect the content of the cluster, i.e. reflect the

commonality of the documents belonging to this cluster;

• it must be as specific as possible while proposing somemore abstract

concepts sometimes;

• it must contain a limited number of concepts.

3.5.2.2. Modeling the objectives

Those objectives remind of the ones we defined for annotating documents.

The concision objective has the same goal, that is being easily understand-

able by a human. Consistency is obvious as the labels should accurately

represent the clusters. Themain difference regards the specificity of the la-

bels. When annotating documents, we aim at selecting the most specific

concepts. Here with clusters, we want to be able to generalize sometimes.

For example, if a cluster contains documents related to cat, dog, rabbit

and human, it would be accurate and easier for the user to label it mam-

mals. The loss of information must be minimized during this process so

that the generalization is controlled: animalwould be too generic.

The process for labeling a cluster is designed the same way as for annotat-
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ing a document. That is, we define a search space L0, a neighborhood—

here, the neighbors are the clusters that have been grouped—and we look

for an optimum L∗ that maximizes an objective function g(L)

L∗ = argmax {g(L)}. (3.5)

The same greedy algorithm as the one presented in Algorithm 1 can be ap-

plied as it relies on the same type of input. The same process, i.e. itera-

tively removing concepts from L0 seems legitimate too. Only the calculus

of the value of the objective function g(L) is different.

Let us denote Cl the cluster to annotate containing two clusters, i.e. Cl =

{Cl1,Cl2}. The clusters Cl1,Cl2 are already labeled—with L1, L2 respectively—

since we chose a bottom-up algorithm. We define Lt as a temporary set of

concepts containing all concepts in L1, L2, so Lt = L1 ∪ L2. The search space

L0 is based on Lt but has to be enriched with novel concepts so that more

generic concepts may be proposed in the final labeling:

L0 =
∪
c∈Lt

anc(c), (3.6)

where anc(c) is the set of all ancestors of the concept c and c itself. L0 still

reduces a lot the search space compared to the whole ontology by limiting

it to the concepts already present in the documents and their ancestors.

While we questioned the necessity of enriching A0 with the ancestors in

the last chapter, here it is more appropriate. There is a key difference in

terms of intention between the annotation process of the previous chap-

ter and the labeling of clusters. Here, the aim is to summarize, factorize,

generalize a set of concepts into a smaller onewhile keeping itmeaningful.
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To this end, the introduction of concepts of higher abstraction should be

encouraged.

Theobjective function f(A) for annotatingdocuments inChapter 2 (see §2.4.2)

was expressed as an objective and a constraint. g(L) must be somewhat

similar as it relies on the same foundations. In anHAC context, the neigh-

bors of the node to label are in fact its two children that have been agglom-

erated. As a result, the adapted consistency objective is

consistency(L) =
1
2
simg(L, L1) +

1
2
simg(L, L2). (3.7)

The penalty for keeping the list of concepts concise is also adapted as

penaltyc(L) = μ|L|. (3.8)

Finally, there is the objective regarding the global specificity of the set. It

can bemodeled as another constraint to add so that thefinal objective func-

tion g(L) has a better control over the specificity & genericity of the output.

We define it as the average specificity of L:

penaltyg(L) =
1
|L|
∑
c∈L

IC(c). (3.9)

This means that themore the concepts in L are specific, themore penaltyg

increases. Therefore, when L is pruned, concepts can be removed for two

reasons:

• L is not similar enough to the labels of the inner clusters,

• L is too specific and it increases substantially the average specificity.
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Thefinal objective function is the consistency objective under the two con-

straints defined above, that is

g(L) = consistency(L)− penaltyc(L) ∗ penaltyg(L), (3.10)

g(L) =
1
2

∑
Li∈{L1,L2}

simg(L, Li)− μ
∑
c∈L

IC(c). (3.11)

The two penalties are not summed but multiplied since we are looking for

a label that is concise because it is generic. They should thus not be inde-

pendent from each other. The expected behaviour of this function is the

following. If a concept in L is novel, it may ormay not be removed depend-

ing on the result of the trade off of genericity/similarity. If it is very ab-

stract, penaltyg(L)will decrease. However, consistency(L)will decrease as

well as it will not be very similar to the concepts labeling the inner clusters.

On the other hand, a concept that is very specific will have to be well rep-

resented in the inner clusters for being kept in L. Again, this trade off is

balanced by μ. With a high value of μ, the labels will tend to be systemat-

ically abstract while with a low value, they will remain the same as those

of the inner clusters.

3.6. Algorithm and the study of complexity

As we want to provide a scalable method, we need to study its feasibility,

particularly by inspecting its time complexity. We do not aim at ameliorat-

ing the HAC complexity in any way, since the aim is to explore the possi-

bility of using semantic annotations of documents. Nevertheless, we need

tomake sure our approach has a comparable complexity. To this aim, this
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section details the algorithmwe rely on and its complexity.

3.6.1. Algorithm details

Thealgorithm is a greedy algorithm leading to a binary tree inspired by the

very common Neighbor-Joining method in systematic biology (Saitou and

Nei, 1987). Algorithm 2 details the whole process. During the initializa-

tion, the first clusters and the tree are created: each cluster is a leaf and its

label is the annotation of the document it represents (l.5-9). The similar-

ity matrix of trivial clusters is computed by using semantic similarities of

their cluster labels (l.10-15). Then, the agglomerative process begins and

iterates until there is only one cluster. Each iteration consists in finding

the pair of the closest clusters Clx,Cly in the matrix (l.18). A new cluster

Clnew is created (l.19). In order to label the newly created cluster we can rely

on the algorithm defined in the last chapter as only the objective function

changeswithout introducing or removingparameters. We thusneed to de-

fine the cluster’sneighborhood. In this case, it is the list of its two children

(l.20). This new cluster is then labeled by using the objective function de-

fined in §3.5.2.2 (l.21). We also approximate and store the distance of this

cluster to its children by computing the semantic similarity of their labels

(l.22-23). This step allows us to build a tree with branch lengths represent-

ing the semantic similarities between the nodes. Note that the following

equations assume that the SSM is bounded in an interval [0; 1], as most

SSMs are (Harispe et al., 2015b):

d(Cln,Clx) = 1− simg(Cln,Clx),d(Cln,Cly) = 1− simg(Cln,Cly). (3.12)
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Finally, the similarity matrix must be updated. The new cluster is added

to it and all the similarities with other clusters are computed. The rows

and columns corresponding to the two agglomerated clusters are removed

(l.24-29).

3.6.2. Complexity analysis

In order not to be redundant, the complexity analysis refers to some no-

tions explained in Chapter 2. The algorithm 2 features Smax ∈ N as an

input that aims at bounding the maximal size of labels associated to the

clusters. In practice, Smax has been set to 20 in the experiments detailed in

§3.9. This is subject to variations depending on the dataset because if docu-

ments are heavily annotated, Smax should be higher, although a document

is more likely to be annotated by ten to twenty concepts in general. It is

used as a parameter of Annotate(·) in place of the th input parameter. Note

that the first lines of the algorithm guarantee that there is no inconsis-

tency between D and Smax. Let us detail the few steps preceding the actual

clustering of the documents. Creation of initial clusters (l.5-9) is inO(|D|).

Filling the matrix requires to fill O(|D|2) cells, each of which is computed

inO(S2max) for the BMA composite average. Initialization of the algorithm

(l.2-15) is thus made in

O(|D|2S2max). (3.13)

Theclusteringprocess consists of |D|−1 iterationsduringwhich threemain

processes occur. At each iteration, the matrix is browsed once to find the

best cluster pair (l.18) in O(z2) where z is the current number of clusters.
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Algorithm 2: Clustering and labeling of a set D of documents
1 Function Cluster (D,μ, Smax, θ)

Input :The set of documents to cluster D, a real number μ ∈ [0; 1],
the maximum size of cluster labels Smax, an ontology θ

Output :The root node root of the tree
2 if One annotation size is greater than Smax then
3 print an error and exit;
4 end
5 clusters← {};
6 for i← 1 to |D| do
7 Create a childless cluster Cli with labels Li = Ai;
8 clusters ∪ {Cli};
9 end
10 Create a matrixM of size 2|D| × 2|D|;
11 for i← 1 to |D| do
12 for j← i+ 1 to |D| do
13 M(i, j)← simg(Li, Lj);
14 end
15 end
16 new← |D|+ 1;
17 while |clusters| > 1 do
18 Find the pair of remaining clusters Clx,Cly with the highest

similarity;
19 Create a new cluster Clnew;
20 Create a list K← {Clx,Cly};
21 Create Lnew ← Annotate(K,μ, Smax, θ) the labeling of Clnew;
22 Add child Clx to Clnew with a distance of 1− simg(Clnew,Clx);
23 Add child Cly to Clnew with a distance of 1− simg(Clnew,Cly);
24 clusters← clusters ∪ {Clnew};
25 clusters← clusters \ {Clx,Cly};
26 for Cli in clusters do
27 i← index of Cli inM;
28 M(i,new)← simg(Li, Lnew);
29 end
30 new← new+ 1;
31 end
32 root← cluster[1];
33 return root
34 end
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The label of the cluster is then computed by using amodified version of the

annotating algorithm for which the complexity is O(knSdmax + n3) accord-

ing to equation (2.18); where k was the number of neighbors taken into

account, n was the size of the initial set A0 and Sdmax was the maximum

size of annotation. For cluster labeling, the neighbors are the children of

the new node so this value is constant (k = 2) and is removed from the

complexity. Sdmax, themaximum size of a document annotation, is hereby

replaced by Smax. The initial set for labeling a cluster, denoted L0, should be

calculated following equation 3.6. However, in order to control the scala-

bility of the algorithm,we introduce a hypernymy parameterh that limits

the search among ancestors. That is, anc(c,h) are the h direct ancestors of

concept c. As a result, the search space L0 is inO(hSmax). The adapted com-

plexity is thusO(2(hSmax)Smax + (hSmax)3) = O(h3S3max). The third and last

important task is the computation of new semantic similarities with the

(z − 1) other clusters in O(zS2max). Consequently, the complexity of each

iteration in the while loop is a browsing of the matrix, a labeling of the

new cluster and the computation of new similarities, leading to an overall

complexity of each while iteration (l.18-29) of

O(z2 + h3S3max + zS2max). (3.14)

The complexity of all iterations of thewhile loop,which dominates the one

of the initialization and thus the time complexity of the whole algorithm,

is hence:

O

 |D|∑
z=1

(
z2 + h3S3max + zS2max

)
= O

(
|D|3 + |D|h3S3max + |D|2S2max

)
.

(3.15)
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As complexity is particularly crucial for large datasets, i.e. large |D| and

|C|, Smax can safely be considered smaller than |D| leading to

O(|D|3 + |D|h3S3max). (3.16)

We also investigated another heavier but potentially more accurate appro-

ach for clustering documents. Instead of labeling a new node by consid-

ering its two children as neighbors, we propose an alternative for which

the set of neighbors is the set of all documents contained in this new clus-

ter. Indeed, when a new node is labeled, there is a chance that some bias

or noise is introduced by our heuristic. As a result, high-level nodes may

suffer from accumulated imprecision that would decrease annotation ac-

curacy, hence impacting the clustering quality. Using all observations for

annotating the node is a solution to make sure that full evidence is taken

into account when labeling nodes. Let us study the complexity of such an

approach by using the one previously detailed. The only difference is the

definition of L0. It nowalso depends on themaximal size of thenewcluster

which increases by 1 at each iteration of the while loop, that is, the search

space L0 is inO(zhSmax). The adaptation of the labeling complexity is thus

(zhS2max + (zhSmax)3) = O((zhSmax)3) instead of h3S3max. When plugged into

to the equation 3.14, this results to an iteration complexity in

O
(
z2 + (zhSmax)3 + zS2max

)
= O

(
(zhSmax)3

)
(3.17)
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and the complexity of the whole algorithm is

O

 |D|∑
z=1

(
(zhSmax)3

)
= O

(
|D|4h3S3max

)
.

(3.18)

From now on, the first approach is denoted by Light Semantic Clustering,

or LSC, and the second one is referred to as Heavy Semantic Clustering, or

HSC. While LSC has a time complexity rather similar to that of classical ap-

proaches (typically,O(|D|3)), HSC is one order above. However our approach

here is exploratory as it mainly aims to identify the gains and losses of re-

lying on semantic similarities combined with automatic labeling. In fact,

if HSC turns out to be themost accurate approach, then it can easily be opti-

mized to get a reasonable time complexity. Here are several optimization

hints to this end.

1. Using the values computed in previous iterations.

As for theprevious chapter, somecalculations areneedlessly repeated.

Since the algorithm follows an agglomerative strategy, some compu-

tations can be stored, reused, and updated only when needed (recall

the SumMaxCols and SumMaxRows).

2. Sampling the neighbors.

We can also consider to only take a sample of fixed size k of the ob-

servations contained in the node to annotate it. This would give a

complexity similar to that of LSCwhile approximating HSC.

3. Building L0 differently.

The high complexity of HSC is due to the definition of L0, particularly
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because it merges all annotations of the observations in the node to

be labeled. However, another way to proceed is to define L0 as in

LSC, that is by taking the union of the labels of the two children of

the node. The objective function would still consider all documents

within the cluster as neighbors, but the dimensionality of the search

space would be greatly reduced.

We are thus convinced that the high complexity of HSC can be reduced. Be-

fore studying its behaviour comparatively with LSC and a classical HACme-

thod, let us explain an important post-processing aspect of the output tree

and detail the evaluation benchmark.

3.7. Post-processing

The algorithm per se produces a binary tree which is difficultly exploitable

by a user. Grouping the clusters by pairs is legitimate for the algorithm

complexity, however, a user would expect larger categories to appear in-

stead of a dense binary tree. Figure 3.6 shows the problem. The picture in

(a) is an example of output of such an algorithm. As the distance of each

node of the tree to its children is computed, it makes it possible to repre-

sent brancheswith various lengths. Thiswould help the user to intuitively

identify the groups of clusters that maymake sense (b).

A post-processing can automate the cluster definition instead of leaving

this task to the user. The post-processing algorithm consists in flattening

the tree in certain areas in order to provide a tree as in (c). The distribu-

tion of distances in a tree is often bimodal with a peak for low values—
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(a) (b) (c)

Figure 3.6.: With no branch length (a), it is hard to visually determine the
most meaningful clusters. When branch lengths are taken
into account (b), clusters clearly appear. The post-processing
algorithm we propose produces a tree such as (c) so that the
most meaningful clusters are automatically determined.

representing intra-cluster distances—andanotherpeak forhighdistances—

representing inter-cluster distances (see Figure 3.7).

Clusters should be flattened in areas containing extreme values in those

peaks. It seems obvious for the low distance areas: when nodes are close

to each other, they are merged. However, it is a little trickier for the op-

posite, that is, when nodes are extremely distant. In fact, despite the fact

that some clusters are very different from each other, they were closest in

the matrix at some point and they have been gathered. Therefore, they

share a common parent. This situation occurs mostly near the root. For

example, consider Figure 3.8, a tree with two children at the root. The

first child is labeled cooking, the other one is labeled {computer science,

travel}. In {computer science, travel}, there are two clusters, computer

science and travel. During the last iterations of the algorithm, the clus-

ters labeled computer science (cs) and travelwhere the closest. This does

notmean they are close—besides, the labels of their parent are confusing—

, and it seems more appropriate to have three clusters at the root, such

as cooking, computer science and travel. All of them should be on the

same level as they all are major topics. We thus alter the tree to remove
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thl thh

α

β

Figure 3.7.: Example of a distribution of distances in a clustering tree from
the benchmark dataset (see §3.8) with the representation of
the α, β quantiles.
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cooking cs,travel

cstravel

root

cooking cs travel

root

Figure 3.8.: The limitation of relying on an agglomerative algorithm. cs =
computer science. The tree obtained on the left is the result of
an agglomerative processwere the cs and travel clusters have
been gathered although they are very distant (branch lengths
arenot shown). Instead, the tree on the right is preferable and
requires to flatten the tree by removing the {cs,travel} clus-
ter.

thenodes (here {computer science, travel}) forwhich children (here com-

puter scienceand travel) andparent (hereroot) are verydifferent aswell.

Another reason for flattening is the similarity of cluster labels. Indeed,

when two nested clusters have the same labels, the algorithmmerges the

lower cluster content into the top one. This specific case occurs on two lev-

els while the previously explained one works on three levels.

The algorithm that does this task is pretty straightforward. First, we need

to find the threshold values for which distances may lead to a flattening.

As the distribution of distancesmay vary depending on the dataset and the

tree, we define two quantiles α, β. Their definition is based on a training

set (see §3.8.2.2). For example, with the training set of the benchmark pro-

posed further (see §3.8), best results are obtainedwith α = 0.2 and β = 0.87.

Second, we define two threshold values thl, thh for the low and high val-

ues below or above which distances will be considered during the flatten-

ing. A recursive function browses the tree with a top-down strategy. For

each node it browses, if its parent and its children all have low or high dis-
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tances with it, then it branches the children nodes to the parent node and

removes the current node. Finally, the algorithm stops when it reaches

the leaves and returns the processed tree. Figure 3.9 shows parts of a tree

before and after this process. We see that some inconsistencies seem to re-

main in the tree because some items are outliers and cannot be clustered

correctly.

3.8. Creation of a benchmark

To the best of our knowledge, there is no work that focuses on clustering

semantically annotated documents. In fact, the papers presented in the

Related Work section do not make any comparison with other approaches

on the basis of a common dataset and metrics. We can only identify the

novelties proposed by each method without clues as to their comparative

performances. Besides, the specificity of eachmethodmakes it evenmore

difficult to compare them, as many of them rely on texts with only a few

relying on other documents such as annotated genes. As we definitely

want to test our approach, we thought about developing a benchmark and

comparing several methods, including ours, on this benchmark. Unfor-

tunately, the source code of state-of-the-art approaches is rarely available

and often also ontology-specific. As a result,wepropose a benchmark built

upon previous bookmark annotations, curation and semantification with

WordNet. Hopefully, this will provide a useful dataset for comparing clus-

tering methods.
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(a) Clusters about food and cooking. (b) All clusters merged into one.

(c) Clusters of very different topics
gathered because of an agglomer-
ative algorithm.

(d) Very distant and close clusters
have been flattened. Some incon-
sistencies remain but the result
overall seems better.

Figure 3.9.: Different parts of a tree before and after the post-processing.
Folder icons represent clusters and file icons represent docu-
ments. The text associated with each document is its seman-
tic annotation.
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3.8.1. Original data

Finding relevant datasets for evaluating those approaches turned out to be

averyhard task. Therearemany textual collectionsused for benchmarking

clustering (Rossi et al., 2013) and some papers that evaluate cluster labels

(Role and Nadif, 2014; Carmel et al., 2009). In many cases, the informa-

tion available on the documents to cluster is only their content. The same

problemoccurs regarding labeling, forwhich the text is used to extract the

labels of a given cluster. On the other hand, increasinglymore documents

tend to be semantically annotated. Themost obvious ones are the biomed-

ical papers for which the annotation has been the main topic of Chapter

2. Evaluating the results of a clustering of biomedical papers would how-

ever demand a very high expertise that we do not have in the team. Such

results would hence be barely interpretable.

Wetzker et al. (2008)highlighted the fact that social bookmarkingmay lead

to very interesting sources of information. They also stress that it can be

subject to spamandpropose someguidelines tomake sure that the crawled

data are not biased by this spam. They created a corpus from a dump of

del.icio.us that associates users to the bookmarks they created and their

annotations. An Italian team (Andrews et al., 2011) followed with this

study by proposing a semantic version of a subset of this corpus. Themain

difference is that all annotations of the bookmarks have been mapped to

WordNet, instead of simply beingwords. Thisworkhas beendonebyhand,

providing a high quality corpus at the cost of a limited size.

A real use case application can, however, be designed. Say a user wants

to reorder his/her bookmarks. Those bookmarks are annotated by concepts
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fromWordNet 3.0. Here, the annotation has been made by hand, but one

can imagine an automatic concept extraction from the bookmarked web-

site. The clustering approachwe propose can create a tree representing the

bookmarks of the users with their respective category names. Such an ap-

plication makes sense to anyone and creating a benchmark based on this

dataset seems to be much easier than on biomedical papers.

In order to create the evaluation benchmark, we had to curate the seman-

tified del.icio.us dataset. This dataset originally contains 739 URLs—we

will refer to themas bookmarks fromnow on, although a bookmark is gen-

erally associated with a user. Those bookmarks are not directly annotated

withWordNet URIs so we had to automatically map them from Knowdive,

a dataset provided by the authors, to WordNet 3.0 by using the specified

closeMatch relationship. Since some annotations did not have any close

match in WordNet 3.0, we manually reviewed the URLs encoutering this

problem. To that end, somebookmarkshad to be removedbecausewewere

unable tomatch someof their conceptsmanually. The rest (591 bookmarks)

have been used to create the benchmark, consisting of 8 subsets of about

74 bookmarks each. One of them is a training set that should be used for

configuring the method. The seven others are evaluation sets that will be

used to score the results.

3.8.2. Obtaining expert data

The use case of the benchmark is pretty easy to understand and anyone

with a bit of experiencewith the Internet should be able to cluster and label

a set of bookmarks. Therefore, we created a tool easing those tasks and

called for participation in this project.
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Figure 3.10.: Example of a bookmark identified by its ID 218110 and anno-
tated by three concepts. The signature on the right gives a
simpler representation.

3.8.2.1. Interface details

Tool: http://clustering.creatox.com

Documentation: http://clustering.creatox.com/documentation.html

The purpose of the tool is basically to propose annotated and anonymized

bookmarks to the user and ask him/her to classify them. The first screen

is a login access so that any volunteer can create a new project or load an

existing one. Then, the main page of the project is displayed.

The tool proposes a bookmark as an identifier and a set of concepts from

WordNet. There is also the signature of the bookmark, which is a visual

representation of the concepts that annotate this bookmark created as fol-

lows. For each dataset, amatrix containing the similarities of all concepts

annotating the bookmarks is computed. It is then used for a multidimen-

sional scaling analysis that outputs a projection,maximizing the distribu-

tion of the concepts in one dimension. The coordinates are used to find a

corresponding color by converting them inwavelength and then colors. Fi-

nally, for each presented bookmark, a rectangle shows the list of concepts

by colored vertical lines (see an example with Figure 3.10). Intuitively, one

can quickly understand the color associated to any big topic of the dataset—

e.g. cooking is red or computer science is blue. It also helps tomake sure

there is no inconsistency in the clusters. If a signature is very different

from the other ones in a cluster, the user should wonder if it is well placed.
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It is possible to create clusters, delete them and put them into other clus-

ters. Everything is based on drag and drop gestures. There are several rep-

resentations of the clusters as illustrated in Figure 3.11: (a) hierarchical, as

a treewithout the bookmarks, (b) pseudohierarchical,with in each cluster

the frequency of concepts and the list of inner clusters and (c) flat,with the

list of bookmarks in each cluster. Each representation has it own benefits.

(a) gives a nice overview, (b) allows to quickly identify themain concepts in

each cluster and (c) allows the user to check for mistakes, inconsistencies

or potential refinement. Since all signatures are aligned, it is very easy to

identify them, as showed in Figure 3.12. On the left side, a single cluster

named “education” is displayed. It appears that some items in this cluster

share something else in their signatures, that corresponds to “academy”,

“university”, “administration”, “school”, “institute”. The interface only

highlights these facts according to their semantic similarity and the user

can chose to split this cluster into two, namely “education” and “organi-

zation”. The latter would certainly be included in the former as nearly all

documents of these clusters refer to “education” or something close.

When a cluster is created, the tool asks for a name. It should be something

that makes sense to the user at first. When the clustering is completed,

that is, when all bookmarks are ordered in clusters and clusters are hierar-

chically arranged, the tool requires to semantify the labels of the clusters.

For each cluster, one can look for corresponding concepts in WordNet and

pick concepts for labeling it. This task is helped by an autocompletion tool.

The user simply has to type the beginning of the concept he/shewould like

to enter and a list of corresponding concepts from WordNet is proposed.

This avoids asking the users to search on WordNet by themselves. Once

this is done, a small survey asks the user several questions about her expe-
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rience with the tool. This includes:

• how long it took to complete the project,

• how confident she is with the clustering,

• how confident she is with the labels,

• how easy or difficult is was to use the tool.

3.8.2.2. Benchmark

12 people answered the call for participation. Some are lecturers (5) or PhD

students (3) from the école des mines d’Alès. Several students (4) were also

willing to participate. None of them had any knowledge of the content of

the dataset prior to participation.

Let us first study their feedback on the process (see Figure 3.13) leading to

19 trees overall. The average confidence in their clustering is 62.1%. This

proves that the task is not easy because the items are hard to classify. Users

are slightlymore confidentwith their labels (65.9%), somementioned that

finding the accurate concepts inWordNetmight be difficult. The other rea-

son for this score is that it may be difficult to give labels to high-level clus-

ters that aggregate groups of various topics. Most of the trees (63.2%) were

completed in 30 to 60minutes. It took between 1 and 3 hours for some oth-

ers (31.6%) and 3 to 5 hours for the rest (5.3%). The average user-friendliness

grade users gave to the tool is 76.7%. This score is quite good but it also

shows that some things could probably still be improved. For example, the

clusters take a lot of space and users have complained about the need to

scroll frequently to access the element they want.
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Figure 3.13.: Users feedback on their experience using the clustering inter-
face.
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For each dataset, we thus have several clusters and labelings. All datasets

have been processed by one-participation and multiple-participation tes-

ters. Therefore, every dataset benefits from a point of view similar to some

others and from unique insights provided by one-shot testers. The trees

have a depth of 4 at most and contain 20 clusters in average.

For evaluating the clusters, we propose to compute the average distance

of the computed tree from the expert trees. Precision and recall of clus-

ters also seem obsolete for this task as we aim at evaluating the whole tree

structure—and not only the clusters for a given cut-off. Some tree distance

algorithms have been elaborated in the literature and we use one of them

to calculate how different a pair of trees is. As a result, for each dataset,

we suggest to compute the standard deviation of expert data, provided that

there are about three expert opinions per dataset. If the tree that our algo-

rithm outputs is on average as different from the expert ones as the expert

trees are from each other, this means that our method has an efficiency

comparable to a human for this task—under the same conditions.

Labels can be evaluated following a more classical method. Here, an F-

measure is applicable to score them, although using a semantic similarity

would be more appropriate for the same reasons given in §2.2.3.2. As the

labels depend on the clustering and vice versa, in order to evaluate the la-

beling, we must label the expert trees in order to see whether or not those

labels are appropriate.
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3.9. Evaluation of clustering and labeling

3.9.1. Results of clustering

The benchmark data has been created by using CompPhy, an online plat-

form that proposesmany tools formanipulating trees (Fiorini et al., 2014a).

It is designed for phylogenetic projects at first but it can well handle any

kindof tree as longas the format is respected. Overall, thebenchmark com-

prises eight datasets, one ofwhich ismeant to beused for tuning themeth-

ods while the others are supposed to be used solely for evaluation. This

way, the optimization/tuning of the technique is not made on the evalu-

ation datasets but on an independent learning set. Regarding the evalua-

tionmetric, the trees can be compared using theRobinson-Foulds distance

(Robinson and Foulds, 1981) that calculates the topological differences of

two (non-)binary trees. The output is not normalized and represents the

number of basic operations needed to transform a tree into the other one.

In order to normalize it, we use the statement in Pattengale et al. (2007)

that an unrooted tree of n leaves induces at most 2n − 3 clusters. As all

datasets have a variable number of documents, the similarity of two trees

t1, t2 is thus estimated as TreeSim(t1, t2) = simRF(t1,t2)
len(t1)+len(t2)−3, where simRF(t1, t2)

is the Robinson-Foulds distance of t1, t2 and len(t1) = len(t2) is the number

of leaves (documents) in the trees.

Let us evaluate our approaches called Light Semantic Clustering (LSC) and

Heavy Semantic Clustering (HSC). First, Table 3.2 summarizes the average

distance among expert trees (expert) and the average distance of LSC and

HSC trees with the expert ones for each dataset. It clearly appears that HSC
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outperforms LSC on all datasets.

D1 D2 D3 D4 D5 D6 D7
expert 0.138 0.156 0.168 0.197 0.159 0.131 0.166
HSC 0.131 0.202 0.189 0.195 0.231 0.190 0.193
LSC 0.255 0.271 0.257 0.257 0.259 0.293 0.276

Table 3.2.: The average distance of expert trees from each other and of HSC
and LSC (after thepost-processing) fromtheexpert trees for each
dataset (D1...D7).

We conducted a more thorough study on the behaviours of LSC, HSC and a

classical HAC clustering—that we further refer to as the baseline—based

on semantic similarities. The baseline is built upon a semantic similarity

matrix (the same that we use in our algorithm) but uses the average link-

age criterion afterwards instead of the semantic similarity between node

labels. Three strategies are explored in the post-processing: without flat-

tening (none), with a flattening of small branches only (half) and with a

full flattening (full). By default, the baseline approach provides a cluster

treewithout branch length or cluster labels. In order to correctly assess the

benefit of the post-processing for baseline, its clusters are thus annotated

using the same labeling strategies as HSC, that is, based on all contained

documents. Figure 3.14 illustrates the results obtainedwith the twometh-

ods, following the three strategies, on the seven datasets. It also shows

the standard deviation of expert data to ease the comparison.

The results show that the flattening is an important process for all approa-

ches and that the full process (i.e. merging both short and long branches)

outputs abetter tree. Note thatmerging closenodes (half versus none) gives

a better improvement than that ofmerging distant ones (full versus half).

With no post-processing, all methods are quite comparable. When close
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Figure 3.14.: Comparisonof semantic clustering (HSCand LSC)with the clas-
sical approach (baseline) combined with the three strategies
none, half and full. Expert standard deviation expert is also
displayed. Lower values are better.
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Figure 3.15.: Comparison of the semantic clustering (HSC and LSC) with the
classicalHAC (baseline) processing times ona 2.9Ghzand8GB
of RAMmachine. Lower values are better.

nodes aremerged, HSC performs slightly better than the classical approach

on some datasets and LSC is not as good as these two. When the full post-

processing is applied, HSC systematically performs better than baseline—

here again, LSC provides less good clusters. In fact, the results of HSC are

very close to the standard deviation that represents the experts’ discrepan-

cies. On two datasets (1 and 4), the trees provided by HSC present the same

distance to the expert ones, consistent with the standard deviation.

The computation time difference between the approaches is very variable

as shown in Figure 3.15. All algorithms include the post-processing and

the automatic labeling of the clusters based on all documents within the

clusters. The computation times have been obtained by running the algo-

rithm 100 times for each dataset and for each method. As expected, base-

line is faster than HSC. Interestingly, LSC is even faster than baseline. This
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is due to the fact that the baseline approach has not been optimized either

and the computation of the average link criterion takes time at each new

cluster. Normally, the execution time of this approach should be similar

or smaller than that of LSC.

Overall, a few conclusions can be drawn from these results. HSC outputs

better trees than LSC and baseline by producing better cluster labels at the

cost of a higher complexity. However, we are confident that an interme-

diate variant can be designed to be almost as fast as LSC and as accurate

as HSC. We are currently exploring various leads including algorithmic op-

timization of HSC detailed in §3.6.2 or a variant of LSC that takes the two

cluster sizes into account during the new cluster labeling. We are hence

confident that we will soon be able to propose an approach that would out-

put nice results while being more scalable. Now that clustering has been

evaluated on a few criteria, let us study the results of the labeling part.

3.9.2. Results of labeling

Unfortunately, it is impossible to simultaneously evaluate the clusters a-

long with their labels. Indeed, the experts provide different trees with dif-

ferent labels that can thus not be summarized in a gold standard labeled

tree for each dataset. Cluster labels are thus evaluated as follows. An ex-

pert tree is input in accordance with our method and the part that is sup-

posed to annotate each node is run. The result of such an approach is a

label for each node of each expert tree for each dataset. The evaluation

of labels follows our previous work proposal (Fiorini et al., 2015c), in tune

with other studies that suggested that semantic similarities better assess

the quality of a semantic annotation (Névéol et al., 2006). For each expert
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tree, we thus compute the average semantic similarity of our labels with

the expert ones. Then, the scores for the trees are averaged for each dataset.

Consequently, we propose a label score for each dataset.

As explained in theprevious sections, it is difficult to compareourapproach

with other studies because of the lack of availability or because these ap-

proaches are too specific. We propose to evaluate our approach CL against

two baselines that are intuitive alternatives for labeling the clusters. The

first proposal merge consists in simply taking the union of all concepts an-

notating the documents within the cluster. In other words, merge is L0

without inclusion of the ancestors andwithout execution of the algorithm.

flat, on the other hand, executes the labeling algorithm on the same set

as merge, that is without including the ancestors. Finally, CL executes the

algorithm on L0 as defined in the algorithm details, i.e. considering the

ancestors of each concept annotating the documents within the cluster.

Results are proposed in Figure 3.16.

At first glance, the scores seem to be pretty close. In fact, it mostly de-

pends on the datasets. The worst scores are obtained with dataset 2 for all

methods. CL and merge perform alike and better than flat on this dataset.

Overall, CL gives better results although it is surpassed by flat for Dataset

6. While merge is a naïve approach that agglomerates all annotations of the

documents in the cluster, CL and flat both are based on on USI algorithm,

which is a more elaborated method. Consequently, these two approaches

provide the best labels, but we note that the inclusion of the ancestors in

our algorithm leads to better scores except for dataset 6. On average, the

semantic score of CL is 0.49 and that of flat is 0.48. The difference between

them is thus small but this result proves that using the hypernyms still im-
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Figure 3.16.: Comparison of the cluster labeling (CL) with the baselines
merge and flat. Higher values are better.
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Figure 3.17.: Comparison of the label size of our cluster labeling approach
(CL) with the baselines merge and flat. Lower values are bet-
ter.
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proves the quality of the labels in some cases like cluster labeling. Figure

3.17 illustrates the label sizes for each method. The merge approach con-

tainsmanymore concepts than the two others as it does not process them.

The sizes of labels for CL and flat compared to that of merge demonstrate

that we can clearly summarize 10 to 15 concepts into 2 concepts on average

without decreasing the quality of the labels—in fact, it even increases it.

Note that even when considering ancestors, the final size does not change

much.

We observe that the scores in general are less good than for document an-

notation, for example, where we usually get semantic scores around 0.8.

The reason here is that there are outliers in each dataset that are hardly

clusterable because their annotation is vague or has nothing in common

with other documents. Some experts gather these outliers in a cluster la-

beled various, some others strive to find thema category. With the former

strategy, our algorithm cannot predict this cognitive strategy and fails at

labeling the cluster. In the latter, the result is the same because usually,

once the expert has put the outlier in a cluster, he/she ignores it to anno-

tate the cluster. When our algorithm annotates a cluster it can possibly ig-

nore outliers when they are really underrepresented—because there must

be enough leaves to veil them. When outliers are removed from the expert

trees, the semantic score of labels is of 0.78 on average, which proves that

our method is hampered by outliers. However, to the best of our knowl-

edge, this is the only approach that proposes to summarize a group of con-

cepts (contained in the leaves) into a smaller set of concepts.

The choice of hierarchical clustering is motivated by further applications.

In fact, this work has been done to explore a bigger picture, which is the
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complementarity of the nodes in the tree that is conveyed by the cluster

labels.

3.10. Complementarity of labels

In some work about clustering or graph partitioning, people are looking

for potential overlap after having separated the groups (Crampes and Plan-

tié, 2014). That is, once the groups have been identified, trying to find the

items that may belong to several clusters. The same kind of question is

relevant for hierarchical clustering. Since the clusters are not definitely

separated, we can observe the tree at different levels. For example, two

clusters labeled italian food and french foodmay belong to a cluster la-

beled food.This means that at a given depth or granularity, these are two

distinct clusters but they are actually quite close. This reminds of the idea

of an overlap for community detection and in amore general way, the con-

cept of complementarity among clusters.

Complementarity of documents may be a useful concept for various appli-

cations. For instance, say a company is looking for two people for analyz-

ing patterns in thedna thatmay be related to a disease. What profiles does

this company need? Can two biologists achieve this goal, or two computer

scientists? Even though this example is very simple, it shows that the com-

pany will focus on candidates with the best synergy. This means the can-

didates who have the knowledge that best covers the subject: in dna se-

quencing, in algorithms, in NLP, in the specific disease, etc. This also en-

tails candidates who can communicate with each other by sharing some

abilities/knowledge. This concept of providing the best coverage of a field
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while having an overlap is a goal of hierarchical clusteringwhich thiswork

may help to reach. Imagine you have a hierarchy of skills, rich enough to

be used as an ontology. A company could annotate its employees with those

skills and cluster the employees. This seems feasible as LinkedIn for exam-

ple uses a graph of skills and mapping skills from CVs to such a structure

seems pretty easy. Then, when the company needs to hire a few people,

the managers can add the candidates in the company cluster to see where

they are branched: do they form new clusters? Are they included in the

existing ones? In terms of human resources, this kind of analysis would

certainly be extremely useful.

The way the trees we create are presented also allows many inferences in

the cluster definition. Let us take the example of clustering users belong-

ing to an e-commerce website. This clustering relies on the items people

bought, considering that each item is annotated with concepts describing

the company catalog. We can think of an advertisement campaign aiming

at promoting some products of a specific brand. The question is about the

people to whom the company should send this advertisement. The goal

of the campaign is to promote the products only to people that will be in-

terested, otherwise future emails from this company will be blacklisted

by users who are annoyed of receiving uninteresting email. Defining the

list of interested customers is made easier by such a hierarchical cluster-

ing. If the product refers to electronics in general, then the advertise-

ment should be sent to anyone of this category. But the granularity of the

category can vary, for example with a product that will be of interest for

people who like smartphones only. Besides, the promotion itself differs,

as in one case, we present different electronic products and their general

use,while, in the other,we specify exactlywhy those smartphones should
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be bought. That is, depending on the group we address, the speech will

be different. I too, define my PhD subject differently whether I speak to

coworkers or my parents.

This kind of clustering could help exploring this intuitive aspect of human

understanding. So far, applications are always domain-specific, which

means that they assume everyone using the application understandswhat

is going on. For example, indexing a biomedical paper as in Chapter 2 is

specific to a thesaurus. That is, the annotations cannot be generalized eas-

ily tomake itmore understandable to non-expert people. Although our ap-

proach does not give a proper answer to this, the underlyingmatter seems

interesting to debate and hierarchical clustering can give good insights for

using knowledge representations to generalize/specialize descriptions.

3.11. Chapter summary

This chapter was motivated by previous work in clustering and labeling.

Although several approaches tried to make use of semantic data (GO con-

cepts, metadata, concept mapping, etc.) there was no generic approach

relying on solid solutions such as semantic similarities.

The studieswe presented are thus exploratory and seek to answer or give in-

sight into answers to the following questions. How can we use semantic

annotations to cluster documents? Are they sufficient to accomplish this

task? Can they be used for labeling the resulting clusters? In order to an-

swer these, the chapter showed an extension of the development in Chap-

ter 2. While type-specific approaches are common in various domains—

textmining, video processing, etc.—,we are convinced that semantic sim-

ilarities can help build more interpretable and meaningful clusters. Actu-
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ally, we investigated how they can perform on their own, hence making

the approach generic.

As there is noworkproposing a benchmark for evaluatinghierarchical clus-

tering of semantically annotated documents, we built an interactive inter-

face asking the users to classify bookmarks annotated by concepts ofWord-

Net. This tool allowed us to gather trees of bookmarks, each one being a

unique interpretation of a user. By adopting classical phylogenetic tools—

manipulating trees is at the core of this field—,we created a benchmark of

seven datasets of about 70 bookmarks each. Another dataset can be used

for tuning/learning. We evaluated our approach on this benchmark by

comparing how different our results were from the expert data. It appears

that our method performs better than classical HAC based on a matrix of

semantic similarities. Besides, we perform a study of complexity of our al-

gorithm and provide hints in order to optimize it so that it can be as fast as

classical HAC. Unfortunately, our results cannot be compared with other

methods from the literature because their source code is not available or

theirmethod cannot be adapted to this specific benchmark. We thus hope

this workmay prove useful for future research aiming atmaking use of se-

mantic annotations for clustering, in trying a semantic similarity, a new

clustering algorithm, etc. A perspective to this work is to consider novel

metrics for evaluatinghierarchical classificationas proposedbyKosmopou-

los et al. (2015).

Wealso studied the possibility of labeling a group of documents, i.e. a clus-

ter. Representing a cluster by concepts can be of great use under some con-

ditions: the labels must be specific enough and concise so that the reader

quickly gets an idea of the content of this cluster. We extended the USI
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framework by adding a constraint to have a control over the genericity of

the labels. Dependingon the context, theusermaywantmore or less speci-

ficity. The context can be represented by the depth of a node in the cluster-

ing, for example. We compare our results with two baselines, one naïve

and one elaborated, and show that our method performs better than both

of them. We also note that it is pretty sensitive to outliers, that human

experts tend to group in a single junk cluster. This is an inherent problem

of automatic approaches. When outliers are removed or when only consid-

ering clean clusters, however, the results we get are muchmore satisfying.

The discussion on the genericity of labels depending on the depth in the

tree ledus towonder about amoregeneralmatter: complementarity of doc-

uments. Even though complementarity is obvious when we think about

it (e.g. a toothbrush and toothpaste are complementary), it is difficult

to represent it formally. In many cases, being able to assess the comple-

mentarity of several items would be useful. For example, for recommend-

ing products on a website, where we want to suggest the user items that

would fit well together by definition, and not because of a content-based

analysis, e.g. because other customers often bought those items together.

We explored a way of representing complementarity through a hierarchi-

cal clustering. Indeed, observing the tree at different levels may lead to

different conclusions. For instance, information retrieval and index-

ing are two different fields, but depending on the context wemight group

them as artificial intelligence. This situation occurs frequently when

we talk to someone. If this person works in artificial intelligence we

will be specific and talk about the two fields separately. However, if we

talk to someone who barely knows what those fields are, we will simply

refer to them as artificial intelligence.
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4.1 v On the saliency of knowledge-based systems in IR

The rather broad title of this thesis is justified by a real wish to investi-

gate a novel way of using documents that are associated with an ontology

through semantic annotations. We focused on two wide topics related to

(or part of) InformationRetrieval, namely indexing and clustering. In fact,

themost importantmotivation of this thesiswas to build genericmethods

to fulfill the tasks needed in these domains.

4.1. On the saliency of knowledge-based systems in IR

In the first chapter, we mentioned that using the Knowledge Representa-

tions (KRs), mainly by relying on semantic similarities (see Definition 2),

we might be able to bring generic solutions. Indeed, so far, the literature

proposes different approaches for different document types, e.g. videos,

genes, texts, etc. Even regarding a single document type, say textual, the

methods differ depending on the document context, e.g. scientific papers

are dealt with differently than novels or patent. It also happens that even

for a given document type and context, the content can be related to sev-

eral topics with different vocabularies (biomedical, chemical, etc.). This

means that there are several granularities of specificity and each of them

requires specificmethods to capture the essence of the documents to anno-

tate them or cluster them. As a result, there are plenty of approaches in

the literature that focus on very specific aspects of vocabulary, context and

type to provide new indexing or clustering approaches.

The creation and use of such type-specificmethods ismotivated by the fact

that itmayperformbetter thanmore generic approaches that solely rely on

semantic annotations because the latter do not capture as many features
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as type-specific methods do (Fiorini et al., 2014c). However, we are con-

vinced that the underlying structure of the knowledge helps to get compa-

rable performances. We tested this idea for indexing first, by building a

generic indexing framework called USI (User-oriented Semantic Indexer).

Instead of parsing the contents of a document to be annotated, we propose

to identify the k-NN (k-Nearest Neighbor) documents in the corpus of al-

ready annotated documents. This is done very easily by using an IRS (Infor-

mation Retrieval System) that looks in the corpus for similar documents

in terms of content. These methods are already specific to the type of doc-

ument and there is an extensive literature regarding them, which means

that efficient approaches are available to fulfill this task. Then, we pro-

pose to use the nearest neighbors to annotate the target document on the

sole basis of concepts annotating the neighbors. To do so, we use a seman-

tic similarity-based objective function that aims at summarizing the set of

concepts annotating the neighbors into a smaller set that corresponds to

the target document. The quality of annotations provided by our approach

is very promising as our annotations are better scored than the literature

to which we could compare them. Since other approaches in the litera-

ture also consider the neighboring documents, this proves that the use of

knowledge truly helps for finding the concepts that are the most relevant

regarding a neighborhood of semantically annotated documents.

The use of KRs is often associated with an idea of poor computing perfor-

mances. Of course, when compared to classical text-based similarities for

example, finding the shortest path in a graph seems heavier. Note how-

ever that, usually, a conceptual annotation is composed of about 20 con-

cepts at most while textual approaches use high-dimensional vectors to

annotate them. Also, a lot of efforts in the Semantic Similarity Measure

170



4.1 v On the saliency of knowledge-based systems in IR

(SSM) field helped in creating efficient tools for computing these similari-

ties. That, and the construction of optimized algorithms which use them

bring very interesting conclusions in terms of computational complexity.

We showed with USI that we can provide a method that is even faster (by

about a factor of 50) than Machine Learning ones, which often require a

heavy training phase (Fiorini et al., 2015c).

As a result, USI is a successful example of a fast generic indexing approach

that relies on semantic similarities. Obviously, this approachalsopresents

a fewdrawbacks that are generally common toKR-based approaches. First,

it requires an adapted domain-ontologywhich is not always available. Sec-

ond, it assumes that there exist documents that are already annotated. Fi-

nally, the choice of a semantic similarity can be problematic, althoughwe

showed that the impact of this choice on USI is minimal.

It follows that semantic similarity-based approaches are more appropriate

in some contexts than in others. Themost conspicuous one is the biomed-

ical field which is very rich in terms of ontologies. We participated in the

BioASQ challenge that featured a real indexing use case. All year long,

an NCBI team is dedicated to the semantic annotation of scientific papers.

They use a semi-automatic tool to suggest annotations that they curate.

This work is extremely time-consuming and any improvement of the qual-

ity of annotations that the semi-automatic method outputs is of huge im-

portance for theirwork. Theresults ofUSI at this challengeare outstanding

considering the fact that it is a generic approach (Fiorini et al., 2015b). It

actually ranks in the top three systems of the challenge and provides real

perspectives for improvements. Indeed, USI could be combinedwith a text-

specific approach to get even better results and efficiently contribute to the
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work of expert indexers.

Theexistence of such an indexing teamalso shows that evenwithpowerful

algorithms like the ones designed for the challenge, the need for the hu-

man expert remains. We investigated some solutions to help the experts

in indexing documents in addition to proposing an annotation instead of

replacing them. Including the user in other steps of the process—rather

than at the end—happened to produce more relevant results compared to

a fully automatic method. Here again, the use of semantic similarities al-

lowed us to build interesting features such as a visual tool that displays the

impact of imprecision when the expert has to make a decision, thus limit-

ing the risk of mistakes (Fiorini et al., 2014b). We dedicated a lot of effort

in the creation of ergonomic, flexible and easy-to-use interfaces that are

typically ready for technology transfer, as the LGI2P laboratory works with

several industrial partners.

4.2. On the genericity brought by semantics

As we claimed that USI is fast, generic and efficient, we wanted to extend

it to another use case that involves deeper modifications—i.e., not only

changing the corpus and the ontology. Clustering is another IR-related

task that may be helped by SSMs. We followed with the same idea as with

USI, that is, exploring the literature and trying to abstract from the previ-

ous methods.

We built a semantic similarity-based clustering approach that uses USI in

order to cluster documents and automatically annotate the clusters (Fior-

ini et al., 2015a). Classical HAC (Hierarchical Agglomerative Clustering)
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is based on a pairwise similarity matrix of documents. The pairwise simi-

larities are used (averaged, compared, etc) in order to calculate the simi-

larity of two groups. Consequently, by iteratively finding themost similar

clusters, creating a new cluster and updating its similaritywith the others

according to an agglomeration of pairwise similarities, these approaches

build a hierarchical representation of clusters. What we propose is to start

from a pairwise semantic similarity matrix of documents and update it by

using groupwise semantic similarities instead. We also label the clusters

along with their creation. Indeed, when a new cluster is created, we can

identify the semantics—themeaning, the reason—of this creation anduse

it to label the cluster. The result is a tree that is enriched by concepts associ-

ated to each node. Note that we process the resulting tree to keep only the

most relevant clusters instead of the very deep binary tree that agglomera-

tive clustering usually outputs. The strategywe detail is thus two-fold and

both aspects are evaluated, i.e. (i) the quality of the clusters when using

semantic similarities and (ii) the labels associated to each node.

Designing and evaluating this approach has been challenging aswell, this

time because of the lack of resources in this domain. However, since we

are convinced that clustering semantically annotated documents is an im-

portant process, we created a benchmark for evaluating it. It is built upon

annotated bookmarks extracted from del.icio.us used in previous studies.

In order to create the benchmark, we developed an interface1 that provides

a clustering tool that experts can use to produce what will be our gold stan-

dards. This tool can be adapted to any ontology and any kind of document.

It provides an ergonomicworkspacewhere the user can create andmanage

clusters. Different views are proposed so that we can focus on specific as-

1http://clustering.nicolasfiorini.info
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pects of the clusters (hierarchy or partitions). Besides, a visual signature

of the documents is proposed, based on their semantic annotations. By

using this signature, the user can easily compare the documents.

We compiled the expert trees gathered with the tool and created a bench-

mark2 composed of eight datasets, one of which should be used for tuning

the method. We showed with this benchmark that our method performs

better than classicalHAC. Besides, the semantic clustering combinedwith

the post-process gives trees that are not much more different from expert

trees than the expert trees with each other.

Regarding the cluster labels, the results are satisfying as our method out-

puts better labels than those of two alternatives we compared it to. How-

ever, we observe that ourmethod is sensitive to outliers. These documents

are oftenpoorly annotatedorhavenothing todowith theother ones. While

the experts usually group them together in a junk cluster, ourmethod fails

to identify them. An improvement of this detection would thus lead to

less noisy clusters and better labels. Again the use of semantic similarities

could help here, by identifying the documents in the dataset forwhich the

semantic annotation is distant from every other annotation.

The study of hierarchical clustering led us to wonder about some further

benefits of thehierarchical structure of the clusters. Although the ideaswe

detailed are part of a very early reflection,we think that it can be developed

in-depth into a research project concerning the assessment of the comple-

mentarity of documents according to cluster organization. This kind of ap-

proach would certainly be problematic to evaluate but beneficial to a wide

range of domains (human resources, study of literature, etc.) and tech-

2http://benchmark.nicolasfiorini.info
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nologies (recommender systems, information retrieval, etc.). The idea be-

hind it is that with semantic clustering, we are given (i) a structure of doc-

uments (ii) associated with semantics. This means that we can propose a

hierarchy of documents, for example employees of a company clustered ac-

cording to their skills. When the companywants to evaluate the relevance

of a candidate to hire, an interesting study would be to integrate him/her

in the cluster, provided the skills of his/her CV. Maybe the candidate will

be branched in a dense cluster, meaning that his/her contribution to the

companymay be redundant; ormaybe he/shewill be branched at the inter-

section of two clusters, meaning that this person would be a key element

for the synergy of the company.

With a more general scope, we stated two objectives (or raised two ques-

tions) in the introduction. The first one concerned the possibility of creat-

ing genericmethods, the second one dealtwith the impact of using seman-

tic similarities. In fact, the latter implies the former, among other things.

It is definitely possible to create generic methods, especially by relying on

semantic similarities. They bring a lot of consistence in the results that

overcomes the lack of features compared to type-specific approaches. On

the other hand, using semantic similarities also impacts the development

of the approaches. Our experience reveals that since the dawn of KRs, the

semantic similarities and other semantic techniques still remain cutting-

edge technologies as we face the lack of libraries, of supported languages

and most importantly, of benchmarks. There is thus a lot of work to be

done on this front, as we are certain that semantic similarity-based sys-

tems help in creating generic approaches that can be integrated in larger

pipelines at a low cost while providing a huge gain, especially due to the

inferences made possible by the use of KRs.
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4.3. Perspectives

Somemore in-depth studies should be conducted regarding the user expe-

rience in some of our applications. For example,we can questionhowdiffi-

cult it is to accurately point on a semantic map the location of a document

to be annotated. Indeed, we showed that it helps in improving the quality

of annotations, however we did not assess how hard it is in a real use case.

More generally, we think that working with ergonomists could enhance

all the interfaces developed in these projects. Nevertheless, the feedbacks

we could gather from users who experienced our tools were mostly posi-

tive, which convinces us that these tools are ready for technological trans-

fer with industrial partners such as promoted by the laboratory.

Our work focuses on the use of semantic similarities and shows that great

results can be achieved on their sole basis. This experience, certainly mo-

tivated by the huge effort in the NLP domain compared to that of SSs in

indexing and clustering, reveals many interesting conclusions. SS-based

systems can be fast, accurate and generic. Still, we would like to explore

the domain of NLP, particularly combinedwith that of SSs. We think both

approaches benefit fromeachother as theybothpresent a set of advantages

that can be exploited in order to build even better indexing and clustering

techniques. After all, the whole point of building generic approaches is to

be easily plugged in and adapted in more specific workflows.

This PhD thesis represents a good summary of my curriculum, initially in

biology and now in computer science. Certainly my motivation has been

and continues to be to help biologists and provide them with novel meth-

ods as proposed in this thesis and other studies (Fiorini et al., 2014a). Most

of all, I think that the creation of a new approach is at least as much im-
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portant as its implementation and sharing. This explains why, systemati-

cally, our approachesare coupledwithdemonstrations, interfaces, datasets,

results, etc. My future post-doctoral work at the NCBI will hopefully ful-

fill all these objectives as I hope to be able to have a direct impact on the

biomedical community by working on biomedical text-mining and, if ap-

plicable, combining such approacheswith SS-based ones developed in this

thesis.

As an epilogue for this thesis, I would like to cite an inspiring quote of Hal

Elrod.

Give up being perfect for being authentic.
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A.1. List of abbreviations

By alphabetical order:

AI . . . . . . . . . . . . . Artificial Intelligence.

BioASQ . . . . . . . . . . A challenge on large-scale biomedical seman-

tic indexing and question answering.

BioASQ5000 . . . . . . . An indexingdataset createdbyMaoet al. (2014),

from the BioASQ 2a task.

bioUSI . . . . . . . . . . An interface for annotating biomedical papers

with USI.

BMA . . . . . . . . . . . . BestMatchAverage, agroupwise semantic sim-

ilarity measure from Schlicker et al. (2006).
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CHC . . . . . . . . . . . . ConceptualHierarchicalClustering, fromSpanakis

et al. (2011).

DAG . . . . . . . . . . . . Directed Acyclic Graph.

GO . . . . . . . . . . . . . Gene Ontology.

HAC . . . . . . . . . . . . Hierarchical Agglomerative Clustering.

HSC . . . . . . . . . . . . Heavy Semantic Clustering, aHACmethodpro-

posed in chapter 3.

IC . . . . . . . . . . . . . Information Content, the amount of informa-

tion a concept conveys.

IR . . . . . . . . . . . . . Information Retrieval.

IRS . . . . . . . . . . . . Information Retrieval System.

k-NN . . . . . . . . . . . k-Nearest Neighbors.

KR . . . . . . . . . . . . . Knowledge Representation.

L1000 . . . . . . . . . . . An indexingdataset createdbyHuanget al. (2011).

L2R . . . . . . . . . . . . Learning-to-rank, an ML method for ordering

a set of items.

LCA-F . . . . . . . . . . . LCA stands for Lowest Common Ancestor. The

LCA-F is a hierarchical F-measure.

LGI2P . . . . . . . . . . . Laboratoire de Génie Informatique et d’Ingénierie de Pro-

duction, the laboratory that hosts this research.

LSA . . . . . . . . . . . . Latent SemanticAnalysis, also calledLSI depend-

ing on the context.
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LSC . . . . . . . . . . . . Light Semantic Clustering, a HACmethod pro-

posed in chapter 3.

LSI . . . . . . . . . . . . . Latent Semantic Indexing, also called LSA de-

pending on the context.

MAP . . . . . . . . . . . . Mean Average Precision, a metric used to eval-

uate ordered results.

MDS . . . . . . . . . . . . Multi-Dimensional Scaling, aprojectionmethod.

MeSH . . . . . . . . . . . Medical SubjectHeadings, abiomedical thesaurus.

MICA . . . . . . . . . . . Most Informative Common Ancestor, an infor-

mation theory-based LCA (see LCA-F).

ML . . . . . . . . . . . . . Machine Learning.

moviesUSI . . . . . . . . An interface for annotating movies with USI.

MTI . . . . . . . . . . . . Medical Text Indexer, an indexingapproachpro-

posed by Aronson et al. (2004).

MTIFL . . . . . . . . . . . MTI First Line, a system submitted to BioASQ

based on MTI.

NCBI . . . . . . . . . . . National Center for Biotechnology Information

NCBO . . . . . . . . . . . National Center for Biomedical Ontology

NLM . . . . . . . . . . . . National Library of Medicine.

NLM2007 . . . . . . . . . An indexing dataset proposed in Aronson et al.

(2004).
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NLP . . . . . . . . . . . . Natural Language Processing.

PMRA . . . . . . . . . . . PubMed Related Articles, an IRS from Lin and

Wilbur (2007).

PMRA* . . . . . . . . . . Amodified version of PMRA that solely consid-

ers the textual similarity of two documents to

compare.

RI . . . . . . . . . . . . . Random Indexing, for which a description is

available in chapter 2 and Sahlgren (2005).

RRI . . . . . . . . . . . . Reflective Random Indexing, an iterative ver-

sion of RI.

SC . . . . . . . . . . . . . Semantic Clustering.

SM . . . . . . . . . . . . . Similarity Measure.

SML . . . . . . . . . . . . SemanticMeasures Library (Harispe et al., 2014a).

SS . . . . . . . . . . . . . Semantic Similarity.

SSM . . . . . . . . . . . . Semantic Similarity Measure.

SVD . . . . . . . . . . . . Singular Value Decomposition, an important

process in LSA/LSI for factorizing a matrix.

SVM . . . . . . . . . . . . Support Vector Machine, an MLmethod for bi-

nary classification.

USI . . . . . . . . . . . . User-OrientedSemantic Indexing, amethodde-

tailed in chapter 2.
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A.2. List of important mathematical notations

By order of appearance:

D . . . . . . . . . . . . . . A set of documents.

θ . . . . . . . . . . . . . . An ontology.

C . . . . . . . . . . . . . . The set of concepts in a KR.

HC . . . . . . . . . . . . . The taxonomy organizing C.

R . . . . . . . . . . . . . The set of non-taxonomic relationships of C.

⪯ . . . . . . . . . . . . . . The binary relation over C defining the taxon-

omyHC.

c . . . . . . . . . . . . . . A concept such that c ∈ C. Some other nota-

tions exist throughout themanuscript: c′,u, v,

w, ci, etc.

θTax . . . . . . . . . . . . Theθ ontology restricted to the taxonomic rela-

tionships.

ICname(c) . . . . . . . . . . The information contentmeasure for a concept

c, as proposed by name.

desc(c) . . . . . . . . . . The set containing c and all of its descendants.

simname(c, c′) . . . . . . . Thesemantic similaritymeasureof twoconcepts

c, c′, as proposed by name.

MICA(c, c′) . . . . . . . . The Most Informative Common Ancestor of c

and c′.
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anc(c) . . . . . . . . . . . The set containing c and all of its ancestors.

A,B . . . . . . . . . . . . Sets of concepts. Note thatA is also used to rep-

resent the tested solutions of USI (see Chapter

2).

P(C) . . . . . . . . . . . . Set of partitions of C.

K . . . . . . . . . . . . . . The set of k nearest neighbors.

Ad . . . . . . . . . . . . . The annotation associated to document d.

AK . . . . . . . . . . . . . The family of sets of annotations of all docu-

ments of K.

A0 . . . . . . . . . . . . . The set of concepts used as the search space of

USI.

f(A) . . . . . . . . . . . . Theobjective function ofUSI over the set of con-

cepts A.

A∗ . . . . . . . . . . . . . Theoptimal solution regarding theobjective func-

tion f(A).

simg(A,B) . . . . . . . . . The groupwise semantic similarity of two sets

of concepts A,B.

simp(a, b) . . . . . . . . . The pairwise semantic similarity of two sets of

concepts a, b.

μ . . . . . . . . . . . . . . Theparameter that controls concision inUSI. It

controls concision and abstraction in semantic

clustering of chapter 3.
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O . . . . . . . . . . . . . Big O notation for detailing the complexity of

an algorithm.

z . . . . . . . . . . . . . . The size of A in USI, so z = |A|.

n . . . . . . . . . . . . . . The size of A0 in USI, so z = |A0|.

Sdmax . . . . . . . . . . . . Themaximal size of an annotation in AK.

Mps . . . . . . . . . . . . Thematrix of all pairwise similarities in USI.

SumMaxCols(Mps) . . . . The sum of all column maxima in the matrix

Mps. For better understanding, we also refer to

its value as SumMaxCols.

sumMaxRows(Mps) . . . The sum of all row maxima in the matrixMps.

For better understanding, we also refer to its

value as SumMaxCols.

SLINK . . . . . . . . . . . The single linkage criterion for HAC.

CLINK . . . . . . . . . . . The complete linkage criterion for HAC.

ALINK . . . . . . . . . . . The average linkage criterion for HAC.

Cli . . . . . . . . . . . . . A cluster.

Li . . . . . . . . . . . . . . The label of the cluster Cli.

L0 . . . . . . . . . . . . . The set of concepts used as the search space for

the semantic clustering approach.

g(L) . . . . . . . . . . . . The objective function of the semantic cluster-

ing algorithm over the set of concepts L.

185



chapter A v Appendix

L∗ . . . . . . . . . . . . . Theoptimal solution regarding theobjective func-

tion g(L).

Smax . . . . . . . . . . . . Themaximal size of a cluster label.
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Pour exploiter efficacement une masse toujours croissante de documents électroniques, une branche de l'Intelligence 
Artificielle s'est focalisée sur la création et l'utilisation de systèmes à base de connaissance. Ces approches ont prouvé 
leur efficacité, notamment en recherche d'information. Cependant elles imposent une indexation sémantique des 
ressources exploitées, i.e. que soit associé à chaque ressource un ensemble de termes qui caractérise son contenu. Ces 
termes peuvent être remplacés par des concepts issus d'une ontologie de domaine, on parle alors d'indexation 
conceptuelle. Ceci permet non seulement de s'affranchir de toute ambiguïté liée au langage naturel, mais également 
d’exploiter les liens existants entre ces concepts. Le plus souvent cette indexation est réalisée en procédant à l'extraction 
des concepts du contenu même des documents. On note, dans ce cas, une forte dépendance des méthodes d’indexation 
au type de document considéré. Pourtant une des forces des approches conceptuelles réside dans leur généricité. En 
effet, par l'exploitation d'indexation sémantique, ces approches permettent de traiter de la même manière un ensemble 
d'images, de gènes, de textes ou de personnes, pour peu que ceux-ci aient été correctement indexés. Les travaux de cette 
thèse proposent des solutions génériques pour indexer sémantiquement des documents ou des groupes de documents. 
 
Deux axes de recherche sont suivis dans cette thèse. Le premier est celui de l'indexation sémantique. L'approche 
proposée exploite l’indexation de documents proches en contenu pour annoter un document cible. Grâce à l'utilisation 
de similarités sémantiques entre les annotations des documents proches et d'une heuristique efficace, notre approche, 
USI (User-oriented Semantic Indexer), permet d'annoter des documents plus rapidement que les méthodes existantes 
tout en assurant une qualité d’indexation comparable.  Une attention particulière a été portée dans ces travaux à 
l’interaction homme-machine et une approche interactive prenant en compte l’impact d’une imprécision humaine a 
également été proposée. Le second axe de cette thèse concerne la classification de documents en fonction de leurs 
contenus.  Là encore, la méthode est indépendante du type des documents considérés puisqu’ils sont regroupés sur la 
base de leurs annotations sémantiques. Un autre avantage de cette approche est que les groupes formés sont 
automatiquement annotés sémantiquement par notre algorithme. 
 
L'ensemble des développements de cette thèse ont fait l’objet d’un soin particulier concernant leur optimisation 
algorithmique afin de permettre un passage à l’échelle, leur validation sur des benchmarks existants ou construits 
spécifiquement et leur mise à disposition pour des développeurs (via des librairies java) et des utilisateurs finaux (via des 
serveurs Web). Nos travaux ont montré que l'utilisation d’ontologies permet d'abstraire plusieurs processus et ainsi de 
proposer des approches génériques sans dégrader les performances. Cette généricité n'empêche en aucun cas d'être 
couplée à des approches plus spécifiques, mais constitue en soi une simplicité de mise en place dès lors que l'on dispose 
de documents annotés sémantiquement. 
 
 
 
 
In order to improve the search and use of documents, Artificial Intelligence has dedicated a lot of effort to the creation 
and use of knowledge bases such as ontologies. They are graphs in which nodes represent a meaning unit–a concept–
and edges are their relationships. For example, this allows to represent the concept “dog” as a subclass of the concept 
“mammal”. Indexing documents is a useful process for further processing and consists in associating them with sets of 
terms that describe them. These terms can be concepts from an ontology, in which case the annotation is said to 
be semantic. Such annotations benefit from the inherent properties of ontologies: the absence of synonymy and 
polysemy. Most approaches designed to annotate documents have to read them and extract concepts from this reading. 
This means that the approach is dependent from the type of documents, as a text would not be processed the same way 
a picture or a gene would be. Approaches that solely rely on semantic annotations can ignore the document type, 
leading to generic processes. This has been proved in Information Retrieval where researchers experienced approaches 
called semantic information retrieval that can fit any type of document.  
 
This thesis capitalizes on genericity accessible through semantic annotations to build novel systems and compare 
them to state-of-the-art approaches. To this end, we rely on semantic annotations coupled with semantic similarity 
measures. Of course, such generic approach can then be enriched with type-specific ones, which would increase the 
quality of the results. This work explores the relevance of this paradigm for indexing documents. The idea is to rely on 
already annotated close documents to annotate a target document. We defined a heuristic algorithm for this purpose 
that uses the semantic annotations of these close documents and semantic similarities to provide a generic indexing 
method. This resulted in USI (User-oriented Semantic Indexer) that we showed to perform as well as best current 
systems while being faster. This idea has been extended to another task, clustering. Clustering is a very common 
process that is useful for finding documents or understanding a set of documents. We propose a hierarchical clustering 
algorithm that reuses the same components of classical methods to provide a novel one applicable to any kind of 
documents. Another benefit of this approach is that when documents are grouped together, the group is annotated by 
using our indexing algorithm. Therefore, the result is not only a hierarchy of clusters containing documents as clusters 
are actually described by concepts as well. This helps a lot to better understand the result of the clustering. A particular 
attention has been devoted in this work to algorithmic optimization and user-friendliness, with interactive human-
machine interfaces, that take into account imprecision of human actions. 
 
This thesis shows that apart from improving the results of classical approaches, building conceptual approaches allows 
us to abstract them and provide a generic framework. Yet, while bringing easy to setup methods–as long as 
documents are semantically annotated–, genericity does not prevent us from mixing these methods with type-specific 
ones, in other words creating hybrid methods.  
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